Laser Spectroscopy of Fr and Rb atoms

Almar Lange

Eduardo Gomez Florian Baumer Luis A. Orozco Gene D. Sprouse

(Work supported by NSF)

http://funk.physics.sunysb.edu/lab/index,html

BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG

- •Z=87; A=208-212 at Stony Brook
- •Radioactive (²²³Fr,²¹²Fr: $\tau_{1/2} \approx 20$ min; ²¹⁰Fr: $\tau_{1/2} \approx 3$ min)
 - \Rightarrow make our own, trap it
- •Simple atomic structure, quantitatively understandable
- •We want to use it to study Parity non-conservation

Apparatus for Production and Trapping of Fr

Hyperfine splitting of the 6s level in Rb

Relationship between hyperfine constant *A* and the electronic wavefunction for the 6s level:

$$A_{6s} = \frac{8\pi}{3} \frac{\mu_0}{4\pi} 2\mu_B \frac{\mu_I}{I} |\psi_{6s}(0)|^2 F_R(z)(1-\delta)(1-\epsilon),$$

 μ_B Bohr magneton F_R relativistic correction μ_0 magnetic constant(1- δ) Breit-Crawford-Schawlow correction μ_I nuclear magnetic moment(1- ϵ) Bohr-Weisskopf effectI nuclear spin

- Compare hyperfine measurements to *ab initio* calculations testing the short distance quality of the wavefunctions.
- Learn something about the nuclear structure from the hyperfine anomaly.

Energy levels in Rb and Fr

Schematic of apparatus

Schematic of apparatus

Method

The grey area shows the point of approach of the two sidebands that forms the basis of our method.

Fitting procedure

Systematic effects?

- Presence of a nonzero external magnetic field (Zeeman shift)
 → error: 34kHz (⁸⁵Rb) and 30kHz (⁸⁷Rb)
- Number of atoms by a temperature change: $Log[p] \propto -\frac{1}{T}$ \rightarrow no error

Linewidths of our lasers
 → error: 3kHz

Error budget

	$^{85}\mathrm{Rb}$		$^{87}\mathrm{Rb}$	
A $[MHz]$	238.819		807.519	
Error	[MHz]	ppm	[MHz]	ppm
Fit	0.013	54	0.046	57
Zeeman	0.034	142	0.030	37
Linewidth	0.003	13	0.003	4
Total	0.037	155	0.055	68

Total separation:
$$\nu_{hf}^{(85)} = 3A^{(85)}$$
 / $\nu_{hf}^{(87)} = 2A^{(87)}$

Comparison

- (i) M. S. Safronova et al.
- (ii) R. Gupta et al. (cascade radiofrequency spectroscopy)(iii) theoretical estimation:

$$\frac{A^{(85)}I^{(85)}}{\mu_I^{(85)}} = \frac{A^{(87)}I^{(87)}}{\mu_I^{(87)}}$$

Source	$A^{(85)}$ [MHz]	$A^{(87)}$ [MHz]
This work	238.819(37)	807.519(55)
previous exp. ⁽ⁱⁱ⁾	239.3(12)	809.1(50)
$theory^{(i)}$	238.2	
estimation ⁽ⁱⁱⁱ⁾		807.3

Hyperfine anomaly

The Bohr-Weisskopf effect describes the modification of the hyperfine interaction due to a finite distribution of magnetization, rather than a point nucleus.

Magnetic hyperfine interaction: $W_{extended}^{l} = W_{point}^{l}(1 + \epsilon(A, l))$

$$\frac{W_{extended}^{l}(A)}{W_{extended}^{l}(A')}\frac{\mu_{I}^{(A')}}{\mu_{I}^{(A)}} = 1 + {}^{A}\Delta^{A'} = \frac{1 + \epsilon(A, l)}{1 + \epsilon(A', l)} \approx 1 + \epsilon(A, l) - \epsilon(A', l),$$

 $\Delta^{A'}$ hyperfine anomaly, μ_I nuclear magnetic moment

In terms of nuclear *g*-factors and hyperfine constants *A*:

$$\frac{W_{extended}^{l}(A)}{W_{extended}^{l}(A')}\frac{\mu_{I}^{(A')}}{\mu_{I}^{(A)}} = \frac{A^{(A)}g_{I}^{(A')}}{A^{(A')}g_{I}^{(A)}}$$

($g_{\rm I}^{\ 85}\!/g_{\rm I}^{\ 87}\!=\!0.295055(25)$)

Conclusion

- General overview: Fr-Experiment
- Hyperfine splitting measurement of the $6S_{1/2}$ state in Rb to about 200ppm
- Improvement of a factor 30 in ⁸⁵Rb and 90 in ⁸⁷Rb (two-photon spectroscopy)
- Precision allows extraction of the hyperfine anomaly
- Agreement with theory to better than 0.3%, which shows the high quality of MBPT calculations