Laser Spectroscopy of Fr and Rb atoms

Almar Lange

Eduardo Gomez Florian Baumer Luis A. Orozco Gene D. Sprouse
(Work supported by NSF)
http://funk.physics.sunysb.edu/lab/index,html

- $\mathrm{Z}=87$; $\mathrm{A}=208$-212 at Stony Brook
-Radioactive $\left({ }^{223} \mathrm{Fr},{ }^{212} \mathrm{Fr}: \tau_{1 / 2} \approx 20 \mathrm{~min} ;{ }^{210} \mathrm{Fr}: \tau_{1 / 2} \approx 3 \mathrm{~min}\right)$ \Rightarrow make our own, trap it
-Simple atomic structure, quantitatively understandable -We want to use it to study Parity non-conservation

Apparatus for Production and Trapping of Fr

magnetic field coils

Trapped Fr

Neutralizer

Summary of measurements at Stony Brook

measurement
Hyperfine
splitting
Lifetime

Hyperfine splitting of the 6 s level in Rb

Relationship between hyperfine constant A and the electronic wavefunction for the 6 s level:

$$
A_{6 s}=\frac{8 \pi}{3} \frac{\mu_{0}}{4 \pi} 2 \mu_{B} \frac{\mu_{I}}{I}\left|\psi_{6 s}(0)\right|^{2} F_{R}(z)(1-\delta)(1-\epsilon),
$$

μ_{B} Bohr magneton
μ_{0} magnetic constant
$\mu_{\text {I }}$ nuclear magnetic moment
I nuclear spin
F_{R} relativistic correction
(1- δ) Breit-Crawford-Schawlow correction
(1- ε) Bohr-Weisskopf effect

- Compare hyperfine measurements to $a b$ initio calculations testing the short distance quality of the wavefunctions.
- Learn something about the nuclear structure from the hyperfine anomaly.

Energy levels in Rb and Fr

85(87) Rb

Schematic of apparatus

Schematic of apparatus

Method

Representative signal for ${ }^{87} \mathrm{Rb}$ as we scan the second laser.

Room temperature cell
Resonant in D1 line
Frequency sidebands at 700 MHz

The grey area shows the point of approach of the two sidebands that forms the basis of our method.

Fitting procedure

Systematic effects?

- Presence of a nonzero external magnetic field (Zeeman shift)
\rightarrow error: $34 \mathrm{kHz}\left({ }^{85} \mathrm{Rb}\right)$ and $30 \mathrm{kHz}\left({ }^{87} \mathrm{Rb}\right)$
- Number of atoms by a temperature change: $\log [p] \propto-\frac{1}{T}$ \rightarrow no error

Electromagnetically induced \rightarrow avoided transparency (EIT)

- Laser intensities

Autler-Townes effect (or ac-Stark splitting)
\rightarrow negligible

- Linewidths of our lasers
\rightarrow error: 3 kHz

Error budget

	${ }^{85} \mathrm{Rb}$		${ }^{87} \mathrm{Rb}$	
$\mathrm{A}[\mathrm{MHz}]$	238.819	807.519		
Error	$[\mathrm{MHz}]$	ppm	$[\mathrm{MHz}]$	ppm
Fit	0.013	54	0.046	57
Zeeman	0.034	142	0.030	37
Linewidth	0.003	13	0.003	4
Total	$\mathbf{0 . 0 3 7}$	$\mathbf{1 5 5}$	$\mathbf{0 . 0 5 5}$	$\mathbf{6 8}$

Total separation: $\quad \nu_{h f}^{(85)}=3 A^{(85)} \quad / \quad \nu_{h f}^{(87)}=2 A^{(87)}$

Comparison

${ }^{85} \mathrm{Rb}$:

${ }^{87} \mathrm{Rb}$:

(i) M. S. Safronova et al.
(ii) R. Gupta et al. (cascade radiofrequency spectroscopy)
(iii) theoretical estimation:

$$
\frac{A^{(85)} I^{(85)}}{\mu_{I}^{(85)}}=\frac{A^{(87)} I^{(87)}}{\mu_{I}^{(87)}}
$$

Source	$A^{(85)}[\mathrm{MHz}]$	$A^{(87)}[\mathrm{MHz}]$
This work	$\mathbf{2 3 8 . 8 1 9 (3 7)}$	$807.519(55)$
previous exp. $^{\text {(ii) }}$	$239.3(12)$	$809.1(50)$
theory $^{\text {(i) }}$	238.2	
estimation $^{\text {(iii) }}$		807.3

Hyperfine anomaly

The Bohr-Weisskopf effect describes the modification of the hyperfine interaction due to a finite distribution of magnetization, rather than a point nucleus.

Magnetic hyperfine interaction:

$$
W_{\text {extended }}^{l}=W_{\text {point }}^{l}(1+\epsilon(A, l))
$$

Ratio:

$$
\frac{W_{\text {extended }}^{l}(A)}{W_{\text {extended }}^{l}\left(A^{\prime}\right)} \frac{\mu_{I}^{\left(A^{\prime}\right)}}{\mu_{I}^{(A)}}=1+{ }^{A} \Delta^{A^{\prime}}=\frac{1+\epsilon(A, l)}{1+\epsilon\left(A^{\prime}, l\right)} \approx 1+\epsilon(A, l)-\epsilon\left(A^{\prime}, l\right),
$$

${ }^{A} \Delta^{A^{\prime}}$ hyperfine anomaly, μ_{I} nuclear magnetic moment
In terms of nuclear g-factors and hyperfine constants A :

$$
\frac{W_{\text {extended }}^{l}(A)}{W_{\text {extended }}^{l}\left(A^{\prime}\right)} \frac{\mu_{I}^{\left(A^{\prime}\right)}}{\mu_{I}^{(A)}}=\frac{A^{(A)} g_{I}^{\left(A^{\prime}\right)}}{A^{\left(A^{\prime}\right)} g_{I}^{(A)}}
$$

$$
\left(\mathrm{g}_{\mathrm{I}}^{85} / \mathrm{g}_{\mathrm{I}}^{87}=0.295055(25)\right)
$$

Conclusion

- General overview: Fr-Experiment
- Hyperfine splitting measurement of the $6 \mathrm{~S}_{1 / 2}$ state in Rb to about 200ppm
- Improvement of a factor 30 in ${ }^{85} \mathrm{Rb}$ and 90 in ${ }^{87} \mathrm{Rb}$ (two-photon spectroscopy)
- Precision allows extraction of the hyperfine anomaly
- Agreement with theory to better than 0.3%, which shows the high quality of MBPT calculations

