

Modern Non-Destructive Electronic Detection Techniques

in Cryogenic Trap Systems

Stefan Stahl

Workshop @ GSI, 2004

Motivation:

Why Non-destructive Detection?

example TOF (time-of-flight, destructive)

- advantage: single particle sensitivity is possible, easy to use
- disadvantage: removes ion out of your trap

Motivation:

Why Non-destructive Detection?

example TOF (time-of-flight, destructive)

Laser-Spectrosc. (non-destructive)

- advantage: few ... single particle sensitivity possible
- disadvantage: costly, only for <u>very</u> few species applicable, optical access needed

Motivation:

Why Non-destructive Detection?

Keeping the particles inside your trap....

- no need to load the trap again (saving time, efforts & costs)
- longer observation time
 (=> good for high precision experiments)
- possibility to electronically cool them down to very low energies (~ few Milli-eV) in ~ 1sec. ("resistive cooling")
- tool for high precision experiments

HOW can we detect ?

Make use of the fact, that lons, Electrons, Protons, are electrically charged particles

Every Moving Charge = Electrical Current

=> you can measure it !

HOW can we detect ?

Motion in a Penning Trap:

HOW can we detect ?

Motion in a Penning Trap:

HOW can we detect ?

Motion in a Penning Trap:

HOW can we detect ?

Axial Motion:

HOW can we detect ?

Axial Motion:

Detection of excited ions (few eV) - cyclotron motion

Detection of excited ions (few eV) - cyclotron motion

Detection of excited ions (few eV)

- cyclotron motion

Sensitivity Improvement: *Resonant instead of broadband detection*

measured signal: $U = Z \cdot I$

$$Z_{LC} = Q_{LC} \cdot |Z_{C,parasitic}|$$
$$\omega_{ion} = \omega_{LC} = 1/\sqrt{(LC)}$$

enhancement factor ~100 (T=300K) ~2000 (T = 4K) ⇒cryogenic components

this idea applies for axial detection as well as for FT-ICR !

Examples of high-Q-coils:

500kHz-coil for FT-ICR detection of heavy masses (Shiptrap / MATS) NbTi wire on Teflon **30MHz-coil** for FT-ICR of hydrogenlike ions (g-factor, Mainz) gold plated copper

Applications and Examples of non-destructive electronic detection schemes

Counting single ions...

Resistive Cooling

induced current creates thermal energy in R => dissipative effect, => exponential decay of amplitude

$$\tau = \frac{\mathbf{m} \cdot \mathbf{D}^{2}}{\mathbf{q}^{2} \cdot \mathbf{R}}$$
$$\mathbf{R} = \frac{\mathbf{Q}}{\mathbf{\omega} \cdot \mathbf{C}}$$

ion	D	τ
¹² C ⁵⁺	5.5mm	23ms
Protons,	""	49ms
¹³¹ Xe ⁴⁴⁺ ,	20mm	3.3ms
e⁻, e⁺,	0.7mm	10.9µs

for Q = 2000, f = 0.4MHz, C = 20pF (except e⁻, e⁺)

Detection of <u>cold</u> particles:

Bolometric Detection

of single cold ions

Mass Spectra (ramping method)

=> simple and cost effective method

Determination of the free Proton Magnetic Moment

$$\frac{\left|\overline{\mu}_{p}\right|}{\mu_{N}} = g_{p} \cdot \frac{\left|\overline{s}\right|}{\hbar}$$

- first direct high precision measurement of a free nuclear particles magnetic moment
- proton / antiproton comparison, matter / antimatter symmetry (CPT-Test)

Application of Cryogenic Electronics at the Proton Trap:

-calibration of B (magnetic field)
 -determination of the ω_z, ω₋
 -cooling the degrees of freedom down to 4K
 by resistive cooling (and magnetron centering)

-detection of the spin direction

not quite easy ...

Measurement Principle: Continious Stern-Gerlach Effect

Motional Phase Detection makes very small frequency changes visible

extension of the Fourier-Limit: $\Delta \mathbf{f} = \frac{1}{T} \cdot \frac{\sigma(\Delta \Phi)}{2\pi}$

one order of mag. improvement expected: e.g. 45° phase difference after 1s => 125mHz

Setup Details **Proton Experiment**

Having a glance at cryogenic setups....

vertical 4Kdewar setup (g-factor, Mainz)

> 4K-multistage shielding (g-factor, Mainz)

4K-electronics section

4K-axial amplifier

4K-broadband FT-ICR amplifier (Mainz 2004)

Conclusion

Modern non-destructive electronic detection principles open up a variety of possibilities

- to detect ion clouds at roomtemperature in a quick and cost-effective way
- at 4K to detect single particles and cool them to sub milli-eV level with superconducting elements
- can be used in high precision experiments like
 - g-factor measurements (HCI's, Proton, Anti-p)
 - ultra-high precision mass-determinations

Outlook:

recent and futural experiments using cryogenic electronic detection systems

- High precision g-factor determination on medium-heavy HCI Ca¹⁷⁺, Ca¹⁹⁺ including 3 superconducting circuits, resonant FT-ICR and cryogenic broadband FT-ICR
- Proton g-factor determination
- Hitrap Cooler Trap cooling down HCI by collision and by resistive cooling
- Quele-Trap for Quantum Computing
- Broadband FT-ICR for KATRIN (Karlsruhe)
- FT-ICR ultrahigh precision mass determination (MATS, Mainz)

• and.... ?

many thanks to the teams in Mainz and GSI (Shiptrap, MATS, g-Factor)

Thanks for your attention!

develop_group @ web.de