Electron Cooling in Traps

B. Möllers, H. Nersisyan, C. Toepffer, G. Zwicknagel

Institut für Theoretische Physik, Universität Erlangen

- Energy loss of ions in magnetized plasmas¹
 - Theoretical challenges and methods
 - Energy loss and cooling times
 - Cooling of antiprotons and positron cooling
- Future tasks and open problems

¹supported by BMBF and GSI

Electron Cooling in a Penning Trap

Energy loss of ions by collisions with magnetized electrons

• Goal:
$$\frac{dE}{dt} = \vec{F}(\vec{V}, Z, n_e, T_e, B) \cdot \vec{V} =$$

$$\boxed{\frac{dE}{ds}} |\vec{V}| \longrightarrow f_i(\vec{V}, t) \longrightarrow T_i(t)$$

- Challenges:
 - Two-body problem is chaotic
 - High charge states of ions
 - Strong magnetic field
 - Electron-electron-interaction (collective effects)
- Requires different, complementary theoretical approaches:
 - Analytical: perturbation theory, linear response
 - Numerical simulations: CTMC,PIC,MD
- Models: binary collisions \longleftrightarrow dielectric theory (stopping by medium polarization)

Hierarchy of Methods

Relevant Parameters

 $H^+, \alpha = 30^o$, HITRAP-conditions

 $Ne^{10+}, B = 6$ T, HITRAP-conditions

- ▶ Reduction of dE/ds with B
- Increase of cooling times?

- ► dE/ds, \vec{F} strongly anisotropic
- High sensitivity to beam emittance?

Scaling with ion charge: $dE/ds \propto Z^x$ with x < 2 for high Z

• Friction coefficient:

$$R = \lim_{V \to 0} \frac{1}{V} \frac{dE}{ds} (V)$$

• Effective coupling:

$$Z\Gamma^{3/2}, \qquad \Gamma = C \frac{n_e^{1/3}}{T_e}$$

 Comparison with cooling force measurements ^{2,3} for

$$\Box C^{6+}, Ne^{10+}, Ti^{22+}, Xe^{54+}, U^{92+}$$
 (ESR)

- D⁺,Li³⁺,C⁶⁺,O⁸⁺,S¹⁶⁺ (TSR)
- More recent measurements at the TSR⁴ confirmed this scaling

- ³A. Wolf et al., *Beam Cooling and Related Topics*, J.Bosser ed., CERN 94–03, Genf, 1994, p. 416.
- ⁴M. Beutelspacher, MPI H V18 2000

Cooling times for U^{92+} in HITRAP

- recombination faster than cooling for large B?
- recombination has to be redone

Cooling times for U^{92+} in HITRAP (2)

$$\frac{dT_e}{dt} = -\frac{2}{3k_B n_e} \frac{n_i}{dt} \frac{dE}{dt}(t) - \frac{1}{\tau} (T_e - T_{res}), \qquad \qquad \frac{dE}{dt}(t) = \vec{V} \cdot \vec{F}[\vec{V}(t), T_e]$$
electron heating at different n_i/n_e
10²
10¹
10⁰
B=6 T, $n_i/n_e \rightarrow 0$ -
B=6 T, $n_i/n_e = 10^{-4}$ -
B=6 T, $n_i/n_e = 10^{-3}$ -
B=6 T, $n_i/n_e = 10^{-3}$ -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (s)

10⁻⁴

0

▶ more studies needed; ultimate aim: time evolution of $f(\vec{V}, t)$ and $f(\vec{v}_e, t)$

<u>p</u>

0

2 0 $B = 0, n_i / n_e \to 0 -$

0.1 0.2 0.3 0.4

0.5

time (s)

0.6 0.7 0.8

Protons p versus antiprotons \overline{p}

- At large magnetic fields: $dE/ds(\overline{p}) > dE/ds(p)$
- Antiprotons are more efficiently cooled by electrons than protons
- ► Cooling of HCI with positrons is more efficient than electron cooling (at n_{e⁻} = n_{e⁺})

Summary and Outlook

- Energy loss of ions in magnetized electron plasmas
 - Reduction of dE/ds with increasing B, $dE/ds(\vec{V}), \vec{F}(\vec{V})$ highly anisotropic
 - Z-scaling $Z^x, x < 2$, for large Z
 - Cooling times are longer than expected by extrapolating from low to high Z, B
 - At large $B: p/\text{HCI}(\overline{p})$ are more efficiently cooled by positrons (electrons)
- Open questions and future tasks (for theory and experiment)
 - Cooling times and recombination rates at large ${\cal B}$
 - Time evolution of ion and electron velocities/energies $[f(\vec{V},t),f(\vec{v_e},t)]$
 - Optimization of the cooling process
 - Positron cooling of HCI?

Protons p versus antiprotons \overline{p} at large B

- At large magnetic fields the electrons move along **B** like beads on a wire.
- For positive ions (p) moving along **B** the drag vanishes for symmetry reasons.
- For negatively charged ions (\overline{p}) electrons are reflected.

 \Rightarrow This cannot be accounted for in a perturbation treatment.

Protons p versus antiprotons \overline{p}

• Lagrangian in cm $(\dot{\mathbf{R}}_{cm} = \mathbf{V}_{cm})$ and relative $(\dot{\mathbf{r}}_r = \mathbf{v}_r = \mathbf{v}_e - \mathbf{v}_i)$ coordinates

$$\mathcal{L} = \frac{m+M}{2} V_{cm}^2 + \frac{(Ze-e)}{2} (\mathbf{B} \times \mathbf{R}_{cm}) \cdot \mathbf{V}_{cm}$$
$$+ \frac{\mu}{2} v_r^2 - \Phi(r_r) + \frac{\mu^2}{2} (\frac{Ze}{M^2} - \frac{e}{m^2}) (\mathbf{B} \times \mathbf{r}_r) \cdot \mathbf{v}_r$$
$$- \frac{\mu}{2} (\frac{Ze}{M} + \frac{e}{m}) \{ (\mathbf{B} \times \mathbf{R}_{cm}) \cdot \mathbf{v}_r + (\mathbf{B} \times \mathbf{r}_r) \cdot \mathbf{V}_{cm} \}$$

- cm and relative motion is coupled, E_{cm} and E_r are not conserved separately
- for comparison: electron-electron scattering (Z = -1, M = m): $\mathcal{L}_{ee} = \mathcal{L}_{cm} + \mathcal{L}_r$

Binary collisions

- Ion-plasma interaction \rightarrow Two-body-Problem with effective Φ_{ei} , e.g. $\frac{Ze^2}{r} \exp(-\frac{r}{\lambda})$
- Energy loss from $\Delta E, \Delta V$ of successive independent binary collisions

- Numerical treatment by Classical Trajectory Monte Carlo (CTMC)
- ► Treating the ion as a small perturbation to the spiral motion of electons in B→ Analytical expressions for the energy/momentum transfer $\rightarrow \frac{dE}{ds} \propto Z^2$

Stopping by target polarization (1): simplified model

dielectric theory, stopping by target polarization (2)

- General description in terms of the phase space distribution (kinetic theory, Vlasov-Poisson-eqs)
- Numerical treatment by PIC (particle-in-cell)/testparticle simulations

Linear response:

$$\propto \frac{Ze}{|\mathbf{r} - \mathbf{V}t|}$$

$$\frac{dE}{ds} \propto Ze\nabla\phi_{\rm ind} \propto Z^2 \int \frac{d^3k}{Vk^2} \operatorname{Im}\left[\frac{1}{\varepsilon(k,\omega = \mathbf{k} \cdot \mathbf{V})}\right]$$

 $\phi_{\rm ind}$

- includes dynamic screening ______
 and the excitation of plasma waves
- fails for high ${\cal Z}$ and strong magnetic fields

T. Peter, MPQ 137 (1988)