Leuven, 2 -6 June 2003, FANTOM Study Week on

Trapping and Manipulating Atomic and Subatomic Particles

Principles of (Ion) Storage Rings

Fritz Bosch, GSI Darmstadt, Germany

Outline

- 1. Why do we need ion storage-cooler rings or ion traps? Traps and Rings - complementary devices
- 2. Basic concepts of rings: ion optics, storage equation of motion
- 3. Beam-cooling techniques
- 4. Tools for the diagnosis of stored and cooled beams

1. Why do we need storage-cooler rings or traps?

Trifodi nebula, glowing in the infrared light of a nascent star

The major part of matter in the universe exists as a plasma, in a well-balanced equilibrium of ions and electrons

Ion storage rings (traps): doing atomic physics, nuclear physics and astrophysics with ions in wellpreserved atomic charge states *Highly charged ions* can be *stored* for hours and *'cooled'* in *Storage-Cooler Rings* where their properties are investigated by *sophisticated methods*

dense plasma of ions and e⁻ (10²⁶/cm³)

high temperature kT ≈ 1...10 keV

excited atomic and nuclear *states*

equilibrium of charge states

highly charged ions low density (10⁴/cm³)

low temperature kT \approx 0.1 eV (T= 10³K)

ions in ground-state

non-equilibrium of charge states

Ion Traps

localized

fixed (low) velocity

medium charge states

few...one ion

Ion Storage Rings

extended

tunable high velocity

high charge states

many...one ion

cooling techniques

restricted lifetime

photonic excitation

radioactive decay

mass determination

lifetime measurement

2. Basic concepts of storage rings: ionoptics, storage, equation of motion

To store ions one needs a set of bending and focusing magnetic multipoles, a 'lattice'.

Experimental Storage Ring ESR at GSI

Due to the finite emittance ε (= size x divergence) ions move on *quasi-periodic orbits* performing horizontal and vertical 'betatron oscillations' around the 'reference orbit'

with a 'betatron wavelength' $[\lambda_{\beta}]_{h,v}$

[orbit length C] / $[\lambda_{\beta}]_{h,v}$ = 'tune $Q_{h,v}$ '

The orbits in terms of deviations from the 'Sollbahn' (including 'orbit dispersion' due to $\Delta p \neq 0$) are solutions of 'Hill's differential equation', first proposed by G.W.Hill in 1886 to describe the motion of planets disturbed by 3-body forces (for a Paul trap it's the Mathieu equation):

u'' (s) + k(s)u - $1/\rho \Delta p/p = 0$

u(s) = deviation from reference orbit; s = ion path; k(s) = k(s + C)
periodic force, determined by the 'lattice'; C = circumference

'cos-like' solutions without 'dispersion' ($\Delta p = 0$):

$$\mathbf{u}(\mathbf{s})_{\mathbf{h},\mathbf{v}} = \{ \varepsilon_{\mathbf{h},\mathbf{v}} \ \boldsymbol{\beta}_{\mathbf{h},\mathbf{v}}(\mathbf{s}) \}^{1/2} \ \cos\{ \ \boldsymbol{\psi}(\mathbf{s}) + \delta \ \}$$
$$\mathbf{'phase'} \ [\boldsymbol{\psi}(\mathbf{s})]_{\mathbf{h},\mathbf{v}} = \int_{0}^{s} d\mathbf{s'} / \boldsymbol{\beta}(\mathbf{s'})_{\mathbf{h},\mathbf{v}}$$

then the 'betatron amplitudes' $\beta(s)$ depend only on k(s) 'Strong focusing' gets small β , large ψ

with 'betatron wavelength' $[\lambda_{\beta}]_{h,v} \equiv 2\pi C/\psi(s = C)_{h,v}$

$$\rightarrow$$
 'tune' $Q_{h,v} \equiv C / [\lambda_{\beta}]_{h,v} = \psi(s = C)_{h,v} / 2\pi$

Avoid integer (n) or 'algebraic' (m/n) Q_{h,v}

It generates periodic, resonance-like enhancement of small perturbations and immediate loss of beam

Such a 'Q- resonance' -due mainly to Jupiter's periodic force- forced the destruction of a former planet orbiting between Jupiter and Mars. Today still 'gaps' (e.g. Hecuba) exist.

Ion storage rings have a restricted acceptance given by ε_h , ε_v , (typically 10...30 π mm mrad) or $\Delta p/p \approx 1...5$ %.

These values and the set of magnets (the 'lattice') determine the solution of Hill's equation, i.e. the actual betatron wavelengths, the betatron amplitudes $\beta(s)_{h,v}$ and $Q_{h,v}$.

Q depends on momentum spread $\Delta \mathbf{p}$ and beam current:

 ΔQ large \rightarrow crossing resonances \rightarrow beam loss

Q changes too, when **accelerating/decelerating** ions

 \rightarrow fast crossing of resonances needed

Coulomb repulsion of ions with charge q effects a **Space-charge limit** of number N of ions ($\Delta p = 0$):

$$N_{max} < \pi/r A/q^2 β^2 γ^3 ε_{-} [1 + {ε_{+} Q_{-} / ε_{-} Q_{+}}^{1/2}] ΔQ$$

{ r = classical proton radius, $1.5 * 10^{-18}$ m; $\varepsilon_{+/-}$, $Q_{+/-}$ = larger/smaller of emittances (tunes); ΔQ = 'tune shift' (< 0.05...0.2)}

Examples: (emittances ε in [π mm x mrad])

1.
$$\mathbf{U}^{92+}$$
 (Q₊ = Q₋ = 2,43; $\Delta \mathbf{Q} = 0.05$) :

- **not** cooled, $\varepsilon_{+/-} = 1$ **cooled**, $\varepsilon_{+/-} = 0.1$
- $E = 500 \text{ A MeV} \rightarrow N_{\text{max}} \approx 4 \text{ x } 10^{12} \qquad N_{\text{max}} \approx 4 \text{ x } 10^{11}$

 $E = 50 \text{ A MeV} \rightarrow N_{max} \approx 2.2 \text{ x } 10^{11} \text{ N}_{max} \approx 2.2 \text{ x } 10^{10}$

2. Ne¹⁰⁺

$$E = 500 \text{ A MeV} \rightarrow N_{max} \approx 3.4 \text{ x } 10^{14} \qquad N_{max} \approx 3.4 \text{ x } 10^{13}$$
$$E = 50 \text{ A MeV} \rightarrow N_{max} \approx 1.9 \text{ x } 10^{13} \qquad N_{max} \approx 1.9 \text{ x } 10^{12}$$

in addition: **'chromaticity'** (momentum dependence)..... 11

3. Beam-cooling techniques

'Cooling' :

Enhancing the phase-space density

i.e. Reducing size, Δp , \rightarrow emittance ε

but:

for **fixed velocity v**, ε is constant (Liouville)

We can never change the area = $\pi \epsilon$ of the ellipse

 \rightarrow apply external interactions \rightarrow cooling

for ion storage rings three cooling methods: 'stochastic'-, 'electron'- and 'laser'-cooling

Simon van der Meer 1925*, CERN, Nobel award 1984 invented 1983 'stochastic cooling' to get a cooled antiproton beam in the CERN SPS collider for detection of the W Boson the 'mediator' of weak interaction

Principle of 'stochastic' cooling [www.fz-juelich.de/ikp/ikp-general/images/stochast]

pick-up:

→ beam position, deviations from reference orbit

difference signal (left/right) \rightarrow amplifier

 \rightarrow kicker at (n + 1/4) λ_{β}

cooling time $\tau_{sto} \propto N_{ion}$ /Bandwith; $\Delta p/p \approx 10^{-3}$

laser cooling proposed first by Ted Haensch realized in ion storage rings first at TSR and ASTRID

Test Storage Ring TSR Heidelberg

- 1. **resonant absorption** of a photon E_{γ}
- 2. directed momentum transfer on ion, $\Delta p = E_{\gamma}/c$
- 3. isotropic re-emission of $E_{\gamma} \rightarrow$ net momentum transfer
 - \rightarrow shifting the velocity profile Δv of the stored ions

 \rightarrow second counteracting device to narrow Δv

→ **interaction** of **longitudinal and transverse** d.o.f. 15

The counteracting force to narrow ∆p may be a second laser or -as at the TSR- a high voltage tube

laser cooling realized for Be⁺, Li⁺....

for highly charged ions (H-like, He-like) only chance to use the 1s hyperfine splitting

advantage of storage rings:

resonance Lorentz-boosted

 $\lambda_{rf} = \lambda_0 \{ (1 - \beta)/(1 + \beta) \}^{1/2} (laser 180^{\circ})$

electron cooling invented in the sixties by G. Budker

collinear, 'cold' (sharp velocity) electrons, guided by a magnetic field, exchange longitudinal and transverse momenta with the ions by Coulomb collisions

electrons removed after one turn

ions come back after $\approx 1 \mu s$

ions get the electron temperatures T₁, T_t after equilibrium has been reached:

$$\mathbf{kT}_{1} = \mathbf{A} \ \beta^{2} \ \mathbf{c}^{2} \ (\Delta \mathbf{p}/\mathbf{p})_{e}^{2}$$
$$\mathbf{kT}_{t} = 1/2 \ \mathbf{A} \ \gamma^{2} \ \beta^{2} \ \mathbf{c}^{2} \ \{(\epsilon/\beta)_{h} \ + \ (\epsilon/\beta)_{v} \ \}_{e}$$

Time $\tau_{\rm C}$ needed for cooling:

 $\tau_C \propto A/Z^2 \ 1/j_{e-} \ \Delta v \ ^3$

[0.1s...30s; A = 200, Z=80; je- = 200 mA)

 $[\Delta v/v]_{inj} = 10^{-3}....10^{-1}$ (hot fragments); $j_{e} = 200 \text{ mA}$

Electron Cooling provides:

• brillant beams ($\varepsilon = 0.1 \pi$ mm mrad; $\Delta p/p = 10^{-6}$)

• constant energy

- long storage times (hours for few-e⁻ ions)
 - same velocity for all ions

Theoretical cooling force: $\propto 1/\Delta v^3$

Horizontal beam size before and after electron cooling (TSR)

Since cooled ions all have (almost) the same velocity

a one-to-one correspondence between circulation frequency f and m/q- ratio exists

4. Diagnostic tools: 'Schottky noise'

 \rightarrow df/f = d β/β - d ρ/ρ

 \rightarrow df/f = { 1/ γ^2 - α_p } dp/p

df/dp = 0 for $\gamma_t^2 = 1/\alpha_p$, γ_t = 'transition energy'

 α_p = 'momentum compaction'(property of lattice) = $(d\rho/\rho)/(dp/p) \approx 1/7$ (ESR)

for v, B = const. $\rightarrow \rho \propto m/q$ {f₁ - f₂}/f₁ = - α_p {[(m/q)₁ - (m/q)₂] / [(m/q)₁]}

Test Storage Ring TSR at the MPI Heidelberg www.mpi-hd.mpg.de/be/tsr/tsrindex

Experimental Storage Ring ESR at GSI Darmstadt www.gsi.de/accelerator/esr

Electron cooler at the ESR www.gsi.de/accelerator/esr