Leuven, 2 -6 June 2003, FANTOM Study week on

Trapping and Manipulating Atomic and Subatomic Particles

Experiments in Ion Storage Rings: mass and lifetime measurements

Fritz Bosch, GSI Darmstadt, Germany

Outline

- 1. Why masses and lifetimes of exotic nuclei? -The deep bond of nuclear structure and stellar nucleosynthesis
- 2. 'Schottky mass- and lifetime spectrometry' at the ESR
- 3. Exotic beta-decays and the age of the universe

1. Why masses and lifetimes of exotic nuclei? - The deep bond of nuclear structure and stellar nucleosynthesis

matter creation in stars:

fusion up to iron explosive rapid neutron capture (r-process) rapid proton cature (rp-process, e.g. Novae)

the abundance of nuclei in the solar system in closest connection to nuclear structure

 \rightarrow masses determine the pathways of nucleosynthesis

 $\rightarrow \beta$ -lifetimes the accumulated abundance

Burning issue of nuclear astrophysics:

How and where the heavy nuclei have been created?

- \Rightarrow need to produce *unstable nuclei* in the *laboratory*
 - ⇒ to measure their fundamental properties: mass and lifetime

to understand the *abundance of nuclei* in the solar system and in the universe

Peaks in the r-process abundance correspond to closed neutron shells (50, 82, 126...) courtesy P. Moeller

still open questions of nuclear structure and explosive nucleosynthesis courtesy R. Nasarewicz

persisting shell gaps??

Extrapolating the shell gaps of stable to very neutron-rich nucleione cannot describe the abundance of r-made nuclei

The rp-process

courtesy H. Schatz

Nova Cygni 1992 Hubble Space Telescope Faint Object Camera

Pre-COSTAR Raw Image

With COSTAR Raw Image

2. 'Schottky' mass- and lifetime spectrometry at the ESR

In-flight production of exotic, highly charged ions by projectile fragmentation; Bρ-separation of many species with same mv/q, or of one species by Bρ-ΔE-Bρ method

Schottky mass-spectrometry:

- projectile-fragments from the fragment separator within {(m/q)₀ +/- 1.5%} stored and cooled in ESR
- each cooled ion of a certain $(m/q)_i$ -species induces a signal $V_i(t)$ {'Schottky noise'} on pick-up plates at each passage with a well-defined period $f_i = 1/\tau_i$
- the autocorrelation $< I_i(t) I_i(t + \Delta t) >$ has strong peaks at $\Delta t = \tau_i, 2\tau_i,...n\tau_i$, i.e.the Fourier Transform of it at the revolution frequencies $f_i, 2f_i,...nf_i$
 - this Fourier Transform of the Schottky noise identifies each circulating ion species → Schottky mass-spectrometry

Schottky spectrum of some 50 simultaneously stored ion species

radioactive 'families':

 $\begin{array}{rcl} & & \mathbf{EC} \\ \mathbf{mother} \ ^{192}\mathrm{Au} \ ^{78+} & \rightarrow & \mathbf{daughter} \ ^{192}\mathrm{Pt}^{78+} \end{array}$

grandma ¹⁸⁷Pt⁷⁶⁺ $\xrightarrow{\text{EC}}$ mother ¹⁸⁷Ir⁷⁶⁺ $\xrightarrow{\text{EC}}$ daughter ¹⁸⁷Os⁷⁶⁺

both Q -values and β -lifetimes are directly observed

Mass spectrometry in the ESR for

longer-lived

short-lived nuclei

two possibilities to minimize the $\Delta v/v$ (...) -term: cooling: Δv gets small 'isochronous' mode: $\gamma = \gamma_t$

Periodic 'fingerprints' of a few ions in the isochronous mode

Proton-rich isochronous fragments of a ⁵²Cr primary beam along the pathway of the **rp-process**

Areas of Mass Measurements in the ESR

Harvest of four experiments of Schottky- and isochronous mass-spectrometry.

More than 170 previously unknown masses were determined

mass resolving power m/ Δ m of 3 x 10⁵ to 9 x 10⁵

accuracy of 20 to 100 keV.

Recording Schottky areas vs time \rightarrow (β) lifetimes

Lifetime measurement of bare ¹⁶⁸Ta⁷³⁺ by recording the Schottky-line area every 30 s.

> $T_{1/2}$ (bare ¹⁶⁸Ta) = 5.2 m $T_{1/2}$ (neutral ¹⁶⁸Tl) = 2.0 m (β^+ + orbital EC)

3. Exotic β -decays and the age of the Universe

4 kinds of β decay:

1.	n	\rightarrow p + e ⁻ + v _e (bar)	β ⁻ c
2.	р	$\rightarrow n + e^+ + v_e$	β^+
2 a	$\mathbf{p} + \mathbf{e}_{\mathbf{b}}$	$\rightarrow n + v_e$	EC
1a	$n + v_e$	$\rightarrow \mathbf{p} + \mathbf{e_b}$	β⁻ _b

1a = 'bound' beta decay, first observed at the ESR

Bound beta decay (\beta_b) of highly charged ions:

- \rightarrow the created electron remains bound in an inner shell of the daughter atom.
- \rightarrow time-mirrored EC; monochromatic v_e(bar)
- \rightarrow inner shell vacancies have to exist
- → the binding energy of the electron is 'saved'; 'Q' -value of the decay gets larger
- → lifetimes of highly ionized atoms might change; stable neutral atoms can get unstable if ionized
- \rightarrow important in hot stellar plasmas during nucleosynthesis
- \rightarrow only detectable if charge state can be preserved

→ ion traps or ion storage rings β_b : $(A, Z)^q \rightarrow (A - Q/c^2, Z + 1)^q$

The cosmic 'clock' ¹⁸⁷Re/¹⁸⁷Os How old is the Universe?

observations favouring a beginning of the world:

universal *red-shift* ('Hubble constant' H₀, 1929) **3 K background radiation** (Penzias and Wilson, 1964)

'clocks' for the age T_U of the Universe:

astronomical ('globular clusters' GC) nuclear (long-lived radioactive nuclei)

From H_0 and T_U one get constraints for the mass density Ω_M of the Universe and the 'cosmological constant' Ω_Λ 18

The GC M13 in the constellation Herkules

All the many 100 000 stars originated at the same time. The massive ones have already left the 'main sequence' (MS) of the 'Hertzsprung-Russell-diagram'. If one knows the time a star stays on the MS as a function of its mass, on can deduce the age of M13 by determining the mass at which its stars are leaving the MS.

Hertsprung-Russell-diagram for all stars within a distance of 500 light years, taken by the Hipparcos satellite.

The age T_{GC} of the oldest GC observed is

 $T_{GC} = (12 + - 1) 10^9 y$

 $\rightarrow T_U \geq 11 \ x \ 10^9 \ y$

is a 'safe' lower limit for the age T_U of the Universe. 20

S.M. Carroll, W.H. Press

Ann. Rev. of Astron. and Astrophysics 30 (1992) 521:

"...it may be more secure [to use nuclear clocks instead of astronomical clocks], because the physics of nuclear decay is so much better

<u>understood</u> than that of stellar evolution..."

The 7 nuclear 'clocks' for the age of the Earth, the solar system, our Galaxy and the Universe

nuclei (decay mode)	half-life T _{1/2} [10 ⁹ y]
⁴⁰ K/ ⁴⁰ Ar (β)	1.3
²³⁸ UTh ²⁰⁶ Pb (α, β)	4.5
²³² ThRa ²⁰⁸ Pb (α , β)	14
¹⁷⁶ Lu/ ¹⁷⁶ Hf (β)	30
¹⁸⁷ Re/ ¹⁸⁷ Os (β)	42
${}^{87}\text{Rb}/{}^{87}\text{Sr}$ (β)	50
147 Sm/ 143 Nd (α)	100

From the U/Th -ratio in a old rock one gets its age from λ_U , λ_{Th} : but U/Th are not in a common decay chain

 \rightarrow assumptions on their relative production in the r-process

β decays better (mother/daughter) all of them have a small Q -value (long T_{1/2})

is their half-life independent on their charge state q?

Neutral ¹⁸⁷Rhenium undergoes β^{-} decay to ¹⁸⁷Osmium with $T_{1/2} = 42 \times 10^{9}$ y.

Bare ¹⁸⁷Re⁷⁵⁺ can decay by β_b decay to the first excited state of ¹⁸⁷Os⁷⁵⁺ at 10 keV. The nuclear matrix element (ft-value) is not known.

Lifetime of bare ¹⁸⁷Re⁷⁵⁺: injection of bare ¹⁸⁷Re (ion source \rightarrow SIS \rightarrow ESR), cooling and recording the number of β_b ¹⁸⁷Os⁷⁵⁺-daughters vs storage time.

Since these are not seen in the Schottky spectra (not resolved, Q -value only 53 keV), the one electron of ¹⁸⁷Os⁷⁵⁺ is stripped off after some storage time . Then, bare ¹⁸⁷Os⁷⁶⁺ can be seen easily in the Schottky spectrum. 24

Part of the Schottky spectrum after 1.5h and 5.5h storage of bare ¹⁸⁷Re⁷⁵⁺ (its dominant line is not shown).

To strip off the electron of the β_b daughters, hydrogenlike ¹⁸⁷Os⁷⁵⁺ ions, a gas jet was turned on, whereby nuclear reaction products, such as ¹⁸²W, were generated. Their yield does not depend on storage time in contrast to ¹⁸⁷Os which grows in proportion to it.

Synopsis

The *lifetime of ¹⁸⁷Re depends* crucially on its *atomic charge state*.

During the 'lifestory' of ¹⁸⁷Re in our galaxy several *'astrations'* occured, where ¹⁸⁷Re (and ¹⁸⁷Os) got *highly ionized*, depending on location and temperature in the (new) star.

new star

23

The halflife of 42 billion years has to be substituded by a *much shorter 'effective' halflife*.

T-PTOCESS~15

One has to model the history of ¹⁸⁷Re by a

stellar (galactic) evolution model.

This (and other) radioactive clock is not more independent from astronomical clocks

Present lower limits of H_0 and T_U on the 1 σ level:

 $H_0 \ge 63$ [km/(s Mpc)] ('Hubble key project', W. Friedman 1999)

 $T_U \ge 11 \times 10^9 \text{ y}$ (GC, U/Th - and 'recalibrated' ¹⁸⁷Re- clock)

\rightarrow H₀ T_U \geq 693

('Standard model' $\Omega_{\rm M} = 1, \Omega_{\Lambda}, H_0 T_{\rm U} = 652$)

'weak' indication for cosmology beyond the Standard model

First direct observation of β_b - decay

206
Tl $\rightarrow ^{206}$ Pb (Q = 1.5 MeV);

207 Tl $\rightarrow ^{207}$ Pb (Q = 1.45 MeV)

⊙ Summary

Ion storage-cooler rings, connected with a projectile-fragment separator, are ideal tools

- to determine precisely as well as effectively the mass of unstable nuclei either by Schottky- $(T_{1/2} > 20 \text{ s})$ or TOF $(T_{1/2} > 10^{-6} \text{ s})$ - techniques
- to address the astrophysically most interesting field of β decay of highly charged ions
- to explore ground state properties also of nuclei far from stability (at both sides) due to the ultimate sensitivity of both techniques: one single stored ion

Outlook

- by stochastic pre-cooling (already successfully tested) Schottky mass-spectrometry will be extended down to $T_{1/2} \approx 1$ s.
- nuclear reaction- and structure physics (at the ESR internal target) with radioactive beams will become feasible after intensity upgrading
- presently the expected luminosity for ions near stability, L ≈ 10²⁶ cm⁻² s⁻¹ (10⁶ stored ions, 1 MHz revolution frequency, 10¹⁴ cm⁻² gas-target atoms) still is too small by a factor of 10...100.
- a mid- and long-term perspective of GSI is the facility to come with new rings and a new fragment separator to address (inter alia) the structure of nuclei far off stability.
- worlwide are other ion cooler-rings for RNB already under construction or at least seriously considered (MUSES, HIRFL, K4, MAFFIA...)

Some references

A stochastic cooling

G. Carron, L. Thorndale	CERN-ISR-RF/78-12 (1978)
D. Möhl	Phys. Rep. 58 (1980) 73
F. Nolden et al.	Nucl. Phys. A626 (1997) 491c
S. van der Meer	Nobel lecture 1984, Les Prix Nobel 1984 p. 192

B electron cooling

At. Energy 22 (1967) 346
Phys. Rep. 196 (1990) 135
Nucl. Phys. A626 (1997) 459c
Nucl. Phys. A626 (1997) 495c

C laser cooling

S. Schröder et al.	Phys. Rev. Lett. 64 (1990) 2901
W. Petrich et al.	Phys. Rev. A 48 (1993) 2127
J. Hangst et al.	Phys. Rev. Lett 74 (1995) 4432

D masses, bound beta decay and nuclear astrophysics

E.M.Burbidge, G.R. Burbidge,	
W.A. Fowler and F. Hoyle	Rev. Mod. Phys. 29 (1957) 547 (seminal paper of nuclear
	astrophysics)
F. Kaeppeler et al.	Annu. Rev. Nucl. Part. Sci. 48 (1998) 175 (r-, s- process)
B. Pfeiffer et al.	Z. Phys. A357 (1997) 235 (r- abundance of elements)
F. Attallah et al.	Nucl. Phys. A701 (2002) 561c (Schottky mass mesurements)
M Hausmann et al	NIM A446 (2000) 569 (isochronous mass measurements)
T. Radon et al.	Nucl. Phys. A677 (2000) 75 (Schottky mass measurements)
Yu. A. Litvinov et al.	Hyperfine Interactions 132 (2001) 283 (Schottky mass m.)
M. Jung et al.	Phys. Rev. Lett. 68 (1992) 2164 (detection of β_b decay)
O. Klepper	Nucl. Phys. A626 (1997) 199c (lifetime measurem. at ESR)
F. Bosch et al.	Phys. Rev. Lett. 77 (1996) 5170 (β_b decay of ¹⁸⁷ Re)
F. Bosch	Atomic Physics 16, ICAP Proceedings, Windsor 1998, p.344
	(Rhenium and the age of the Universe)
W.F. Henning ed.	Conceptual Design Report, GSI, not publ. (future GSI facility)