Quantitative studies of laser-cluster interaction: Status and Prospects

via X-ray production (keV)

L. Adoui⁴, J.-C. Gauthier³, O. Gobert², E. Lamour¹, P. Meynadier², D. Normand², M. Perdrix², C. Prigent¹, J.-P. Rozet¹, D. Vernhet¹

¹ Groupe de Physique des Solides, Universités Paris 6 et 7 ² LUCA/CEA-Saclay, Gif-sur-Yvette ³ LULI, École Polytechnique, Palaiseau ⁴ CIRIL, Caen -GSI- 2002-

Context of laser-cluster interaction studies:

Relatively "new" field: 1994.....

Why Clusters?.....of 10⁴-10⁶ atoms/cluster

> local density $\approx 10^{22}$ cm⁻³ (solid density)

➤ all cluster atoms in the same "uniform" electric field

(skin depth \approx cluster size - 40 nm)

simplification allows a test of models

Which studies?

Production of • multicharged ions (up to MeV)

Connected to both plasma and cluster explosion dynamics

Mechanisms identified; Review paper: Ditmire et al., Phys. Rev. A 53, 1996

Generation of • hot electrons (up to keV) • keV x-rays

Direct insight into the early evolution of the nanoplasma

Only qualitative measurements , Mechanisms of inner-shell vacancies? ...2002 controversial interpretations

Advantage of the x-ray spectroscopy

Ion Spectroscopy

X-ray Spectroscopy

Ion charge state distribution in the plasma

up to Ar¹⁰⁺ MD-TOF ~ 0,5 μs **up to Ar¹⁶⁺** τ (¹P₁) = 15 fs

• scaling laws:

$$\overline{\mathbf{N}_{\text{vacancies}}} = \mathbf{P_0}^{5/3} \mathbf{n}_{\text{OFI}} \, \sigma \, \mathbf{A_c}^{1/3} \, \mathbf{d}^{-2} \, \mathbf{V_f}(\mathbf{I_{Th2}})$$
$$= \mathbf{P_0}^{5/3} \, \mathbf{n}_{\text{OFI}} \, \sigma \, \mathbf{A_c}^{1/3} \, \mathbf{d}^{-2} \, \mathbf{I_{peak}}^{3/2}$$

• absolute photon yield:
$$N_{hv} = \omega \times \overline{N}_{vacancies}$$

example:

	Argon
E _{hv} (eV)	3086
$N_{hv / pulse}$ (theo)	6. 10 ⁴
N _{hv / pulse} (exp)	7.10 ⁴

IR;
$$\lambda = 800 \text{ nm}$$
; $\tau = 130 \text{ fs}$
 $I_{\text{peak}} = 5 \ 10^{17} \text{ W/cm}^2$
 $P_o = 18 \text{ bar}$

scaling law with pressure : $P_0^{5/3}$ and the mean charge state increases in agreement with a collisional picture (e⁻ / ions) scaling law with peak intensity : $I_{peak}^{3/2}$ and constant mean charge state

increases like the effective focal volume the saturation regime is reached

Results : what do we need to understand (1) ... (X_L)

Not in agreement with argon results?

whatever the binding energies !

Very LOW

Results : what do we need to understand (3) ...

Function of laser wavelength

e- oscillation : $U_p(UV) < U_p(IR)$ (/4)

Some differences?

inverse Bremsstrahlung : $E_{e}(UV) > E_{e}(IR)$

X threshold UV < IR

X photon yield UV ~ IR

In agreement with Ditmire *et al.* J. Phys. B (1998) for the X_M photon yield of Xe clusters

recent results on X_L photon yield...! with xenon clusters...

Summary and perspectives

X-ray yield measurements

- easily 10¹² hv/pulse (4π); quasi mono-chromatic
 renewable X-ray source free of debris ⇒*potential applications*
- X-ray yield = f (I_{laser}) for X-ray production: I_{Th} in a large focal volume not I_{peak} max in a small V_f → X source optimization
- Parameter control on the X-ray yield present theoretical descriptions fail mechanisms? a strong effort is needed

.....other parameters

X-ray yield versus pulse duration cluster size distribution versus P_0 , etc.....

....a challenge