

Intra-Beam Collisions

The Giessen Ion-Ion Experiment

Experimental Setup

Singly Charged Heavy Ions for HIDIF

Multiply Charged Heavy Ions

Multiply Charged Heavy Ions

Theory ... Where are you ?

Theoretical calculations exist only for light one- and quasi one-electron systems

Problems with heavy, homonuclear systems:

no perturbation theory applicable: $v_{rel} \ll v_e$ and $Z_1 = Z_2$

MO-calculations not feasible due to large number of states

Metastable ions are produced in ECR ion sources

lon	I	metastable state	life time	fraction in beam
Ar ⁴⁺	75eV	[Ne]3s ² 3p3d ³ F ₄	0.13s	12%
Kr⁴+	64eV	probably [Ar]4s ² 4p4d	n.a.	18%
Xe ⁴⁺	54eV	probably [Kr]5s ² 5p5d	n.a.	29%

Estimated Intensity Losses

Approximations:

- homogeneous ion density in the beam
- Gaussian velocity distribution
- evaluation of the rate coefficient by Monte-Carlo-simulation (I.Hoffmann, private comm.)

Parameters:		Expected loss based on charge exchange only		
Number of ions: 2 x 10 ¹²				
Bunching factor: 0.3		lon	Loss without Ionisation	
		Ar ⁴⁺	8.0%	6.8%
Injection:	Extraction:	Kr ⁴⁺	6.8%	
E _{initial} = 92 MeV/u	E _{final} = 400 MeV/u	Xe ⁴⁺	5.1%	
		Pb ⁴⁺	1.3%	special in
ε _{inital} = 30 mm mrad	ε _{final} = 14 mm mrad	Bi ⁴⁺	1.0%	

Estimated Intensity Losses

evolution of beam parameters with acceleration time for an Ar⁴⁺ beam

Conclusions

Theoretical predictions for charge exchange and/or ionisation are difficult for heavy manyelectron systems at low collision velocities !

Future experiments need to:

- investigate systematically charge transfer cross sections in dependence on ion species and charge state
- further investigate the possible influence of ionisation

in order to:

- estimate intensity losses in planned accelerator and storage rings
- find the lowest charge state where charge-changing intra-beam collisions can be neglected

The People

- H. Bräuning
- A. Diehl
- H. Kern
- E. Salzborn
- A. Theiß
- A. Trassl

in collaboration with I. Hoffmann (GSI)