Impact of atomic charge state on stellar nucleosynthesis

Fritz Bosch, GSI

- 1. Stellar nucleosynthesis (besides fusion) driven by neutron (proton) capture, β^- and β^+ decay at high temperatures = high atomic charge states
 - 2. masses and β lifetimes determine pathway of nucleosynthesis and abundance of elements
 - 3. β^- , β^+ lifetimes depend on atomic charge state
- 4. storage rings only tools to measure β decay of HCI

Explosive nucleosynthesis (r, rp) *not yet understood*

r-process(es): rapid neutron capture one or several, site, pathway?

\rightarrow abundance of heavy elements in our solar system

Entanglement of nuclear structure and nucleosynthesis in the r-process Quenching of shell gaps?

→ produce neutron-rich, highly charged atoms and measure their ground state properties: masses and β⁻ lifetimes

The rp-process

rp (rapid proton capture) -process: explosive H-burning on the surface of mass accreting white dwarfs at high T

ground state properties of p-rich, highlycharged atoms: masses and β⁺ lifetimes

Nova Cygni 1992

Hubble Space Telescope Faint Object Camera

Pre-COSTAR Raw Image

With COSTAR Raw Image

Nova outburst signals explosive H burning up to tin along the proton dripline via p-capture, p-decay, β^+ decay

Why and how ß lifetimes depend on atomic charge state

a) orbital electron capture EC: $\lambda_{EC} = f(n_{eb})$

 $\mathbf{p} + \mathbf{e}_{\mathbf{b}} \rightarrow \mathbf{n} + \mathbf{v}_{e}$

if $Q_{EC} < 2 \ m_e c^2$ atom gets stable for $n_{eb} = 0$

b) bound beta decay β_b = time-mirrored EC

Q value larger by e⁻ binding energy

decay probability $\lambda_{\beta b} > \lambda_{\beta c}$

stable neutral atoms get unstable

if Q(neutral) < $|E_b(K)|$

The couple ¹⁶³Dy/¹⁶³Ho (²⁰⁵Tl/²⁰⁵Pb, ¹⁹³Ir/¹⁹³Pt,...)

a) *neutral* atoms (on earth)

 $\frac{^{163}\text{Ho}^{0+}}{\text{T}_{1/2}} = 4570 \text{ y}$

 $Q_{EC} = + 2.6 \text{ keV}$ $T_{1/2} = \infty$

b) bare nuclei in stellar plasma

The couple ¹⁸⁷Re/¹⁸⁷Os (²⁰⁵Tl/²⁰⁵Pb,...)

 β_b decay goes to an excited state, forbidden in β_c

β_b decay provides

first possibility to measure the

branching ratio $\lambda_{\beta b}$ / $\lambda_{\beta c}$

for the same nuclear transition

 $\lambda_{\beta b} / \lambda_{\beta c} = \left[\mathbf{Q}_{\beta b} / \mathbf{Q}_{\beta c} \right]^2 \psi(\mathbf{0})^2 / \mathbf{f}(\mathbf{Z}, \mathbf{W}_0)$

$\Rightarrow Fermi function f(Z, W_0)$ for β^- decay

still missing complement to the well known *Fermi function for* β^+ *decay* from $\lambda_{\beta^+} / \lambda_{EC}$

c) internal conversion IC (isomers)

for high multipolarities (E4, M4...) IC large lifetime much longer (10,...10⁶) without e_b

neutral ¹⁹³Ir⁰⁺

T $_{1/2} = 10 \text{ d}$ ______ 193 \mathbf{Ir}^{*0+} 11/2- E = 80 keV

M4

_____ ¹⁹³Ir⁰⁺ 3/2⁺

bare 193Ir77+

M4 (no e_b)

193**]r**77+

s (slow neutron capture)- process:

near the valley of stability: n-capt. $/\beta^-$ decay β^- decay for $T_{1/2}(\beta) \le 1$ year

neutron density $\approx 10^8 \text{ cm}^{-3}$ electron density $\approx 10^{27} \text{ cm}^{-3}$ temperature T_S $\approx 3*10^8 \text{ K}, \text{ kT} \approx 30 \text{ keV}$ (n, γ)- (γ ,n) equilibrium

 \Rightarrow N_(A) * $\sigma_n(A) = N_{(A+1)}$ * $\sigma_n(A+1)$

branching points induced by $\beta_b = f(T_s)$

 $\lambda^* / \lambda^0 > 1 \implies T_S$

other example: ²⁰⁵Tl (stable); ²⁰⁵Tl⁸¹⁺ \rightarrow (β_b) ²⁰⁵Pb^{81+*} (T_{1/2} = 1 y?)

key-nuclei: Supernova outbursts, galactic cosmic rays

⁵⁶Ni, ⁵⁴Mn, ⁴⁴Ti/⁴⁴Ca

⁵⁶Ni 0⁺ (6 d) ⁵⁴Mn 3⁺ (300 d)

 $Q_{EC} = 0.4 \text{ MeV}$ 1^{+} <u>1.7 MeV</u>

 $Q_{EC} = 0.5 \text{ MeV}$ Q_{EC}- ... 2⁺_____ 0.8 MeV ⁵⁴Fe 0⁺_____

⁵⁶Co 4⁺____

⁵⁴Cr 0⁺____

$$Q_{EC} = 2,5 \text{ MeV}$$

$$2^{+}$$

$$\overline{E_{\gamma} = 1.15 \text{ MeV}}$$

⁴⁴Ca 0⁺

rev. frequency (a.u.)

 $^{207}\text{Tl}^{81+} \rightarrow (\beta_b) ~^{207}\text{Pb}^{81+}$

 $Q_{\beta b} = 1.5 \text{ MeV}$

1 cycle = 32.4 s (starting at injection)

separation of ${}^{207}\text{Tl}/{}^{207}\text{Pb-lines} \approx 80 \text{ Hz} / 60 \text{ Mhz}$

At new storage rings same techniques:stochastic pre-cooling, electron coolingdetection of β⁻, β⁺, β_b and EC bySchottky spectrometry / particle detectorsbut:

 $\approx 10^2$ more primary, $\approx 10^4$ more secondary beams

