Design of the New Storage Rings

P. Beller

Workshop on Atomic Physics Research at the Future GSI Facility

December 9 - 10, 2002

Physics at the New Storage Rings

- a. Physics with Rare Isotope Beams
 - Stochastic Precooling
 - Electron Cooling
 - Fast Deceleration
 - In-Ring Experiments
 - Isochronous Mass Measurements
- b. Antiproton Physics
 - Stochastic Precooling
 - Accumulation
 - In-Ring Experiments
- c. Atomic Physics
 - Electron Cooling
 - Deceleration to Low Energies (< 100 MeV/u)
 - In-Ring Experiments
 - Fast/Slow Extraction to Cave

The Future Facility

The Storage Rings

Layout of the CR Lattice

Lattice designed by A. Dolinskii

Layout of the AR Lattice

Layout of the NESR Lattice

Parameters of the NESR Lattice

Circumference [m]	210.75
Maximum bending power [Tm]	13
Max. energy for U ⁹²⁺ [MeV/u]	840
Dipole magnets	
Number of dipole magnets	24
Maximum dipole field [T]	1.6
Bending angle [degrees]	15
Bending radius [m]	8.125
Quadrupole magnets	
Number of quadrupole magnets	32
Effective length [m]	0.8
Maximum quadrupole gradient [T/m]	6.51

GSI

Beam Envelopes and Dispersion Function

Horizontal/vertical acceptance [mm mrad]	160/100
Momentum acceptance [%]	±1.75
Horizontal/vertical tune	3.2
Transition energy	5.64
Natural horizontal/vertical chromaticity	-4.8/-4.6

Separation of Two Uranium Charge States

Maximum dispersion [m]7.24Horizontal beta function in the arc [m]6.72Separation of U^{92+}/U^{91+} ($\epsilon = 0.1 \text{ mm mrad}$) [mm]79Separation of U^{92+}/U^{91+} ($\epsilon = 10 \text{ mm mrad}$) [mm]63

Injection and Extraction Scheme

The Electron Ring

Horizontal/vertical emittance [mm mrad]	0.05
Momentum spread [%]	± 0.018
Horizontal tune	3.8
Vertical tune	2.8
Luminosity [cm ⁻² s ⁻¹]	$\sim 1 \times 10^{28}$

The Electron-Nucleus-Interaction Region

Length of magnet free space [m]	1
Horizontal beta function at IP [m]	1.5
Vertical beta function at IP [m]	0.15
Horizontal electron beam size [µm]	270
Vertical electron beam size [µm]	87

Chromaticity Correction

Dynamic Aperture Calculation

Geometric xx' acceptance (drawn in red) for dp/p = 0Normal operation a ≈ 500 mm mradCollider mode a ≈ 300 mm mrad

Dynamic Aperture Calculation

Geometric xx' acceptance (drawn in red) for dp/p = 0Normal operation a ≈ 500 mm mradCollider mode a ≈ 300 mm mrad

Only sextupole components are included.

Non-magnetized electron cooling, electron current 1 A U^{92+} -beam at 740 MeV/u, bunch length ≈ 0.1 m

GSI

Calculations by G. Trubnikov

- a. Final Lattice Layout
 - Higher Order Corrections
 - Dynamic Aperture Calculations
- b. Completion of Ring Design
 - Magnet Design
 - Beam Diagnostics
- c. Beam Dynamics Calculations
 - Cooling Times
 - Equilibrium Beam Parameters, including target
- d. R & D
 - Electron Cooler for Energies up to 450 keV
 - Stochastic Cooling Systems
 - Rf-Systems

... and much more, depending on experimentalists requirements ...

