Laser Spectroscopy of Hyperfine Structure of the 1s Ground State of Highly Charged Ions

Richard Thompson

QOLS Group, Blackett Laboratory, Imperial College London

Outline of Talk

- 1. Introduction
- 2. Imperial College group
- 3. Why the interest in 1s ground state HFS?
- 4. Previous work
- 5. Experimental plans at HITRAP
- 6. Conclusion

Imperial College Ion trap Group

(R C Thompson, D M Segal, 2 RAs and 3 PhD students)

Our previous/current work in Penning traps includes:

- Laser cooling and spectroscopy of singly-charged ions
- Quantum jumps
- Dynamics of laser cooling and sympathetic cooling
- Axialisation of laser cooled ions
- Quantum Information Processing applications
- We have worked with Be⁺, Mg⁺ and Ca⁺

Sympathetic cooling

- Laser cooling only works for a few ion species
- Other species can be cooled via collisions with the laser-cooled ions
- This could allow the preparation of ultra-cold molecular ions or HCI
- The plot shows cooling of HCO⁺ by laser-cooled Mg⁺

Axialisation

- With "buffer gas cooling" the magnetron motion in a Penning trap is *heated* by the collisions
- A weak radial quadrupole drive can be used to couple magnetron and cyclotron motions together so that cyclotron cooling dominates
- We decided to use this with *laser* cooling:

$$\dot{r}_{c} = \delta r_{m} - \gamma_{c} r_{c} - \gamma_{c} r_{c}$$

$$\dot{r}_{m} = -\delta r_{c} - \gamma_{m} r_{m}$$

$$-\delta \text{ is coupling rate} - \gamma_{c} \text{ is cyclotron cooling rate (large, +ve)} - \gamma_{c} \text{ is magnetron cooling rate (small, -ve)} - \gamma_{m} \text{ is magnetron cooling rate (small, -ve)} - \text{Expect } r_{c}, r_{m} \Rightarrow 0 \text{ for } t \Rightarrow \infty$$

Axialisation results

- We have recently built up a mathematical model of this process
- We find that the ions are strongly cooled provided that

$$\delta^2 > -\gamma_c \gamma_m$$

 Ions can be strongly cooled and tightly localised using axialisation

Hyperfine Structure of H-like HCI

- In hydrogen the 1s_{1/2} ground state HFS is at 1400 MHz
- Frequency interval scales as Z^3 ; lifetime as Z^9
- Around $Z \sim 70$ the 1s HFS moves into the optical region
- M1 transition can be measured using laser spectroscopy
- A measurement can give information on:
 - Nuclear properties (charge and magnetisation distributions)
 - QED effects (vacuum polarization and self energy)
 - Later possibilities for optical pumping for weak interaction studies

Previous work on 1s HFS

- Measurements in the ESR at GSI (laser excitation):
 - Bi (Z=83; I=9/2) λ=244nm; τ=0.35ms (1994)
 - Pb (Z=82; *I*=1/2) λ=1020nm; τ=50ms (1998)
- Measurements with Super-EBIT (emission spectroscopy):
 - Ho (*Z*=67; *I*=7/2) λ=573nm; (1996)
 - Re (Z=75; I=5/2) λ=456nm; (1998) [2 isotopes]
 - Th (Z=81; I=1/2) λ=386nm; (1998) [2 isotopes]
- RETRAP
 - HCI (Xe) loaded from EBIT into a Penning trap with sympathetic cooling from laser-cooled Be⁺ ions (2001)
 - One possible use is for 1s HFS measurements

GSI measurement of Pb

- Spectrum shows the ground state HFS transition in ²⁰⁷Pb⁸¹⁺ at 1020 nm
- Measured in the ESR storage ring
- Accuracy is 0.2 nm (2 × 10⁻⁴)

Super-EBIT measurement of Re

• X-ray fluorescence from the EBIT both with and without Re injection

• Optical fluorescence from Re in EBIT showing the M1 transition spontaneous emission

Experimental plans with HITRAP

- Advantages of a measurement in HITRAP:
 - No calibration of beam velocity required
 - lons are at rest
 - Cold ions have potentially narrower resonance
 - Expect temperature around 4K
 - Repeated measurements on a sample of ions
 - Up to 10⁵ to 10⁶ ions expected
 - Clean environment with efficient light collection
- Investigate optical pumping for polarisation of nuclear spin
 - Weak interaction studies possible

Interpretation of Results

- Experiment yields the ground state HFS of the H-like ion
- The theoretical values include the following contributions:
 - Point nucleus HFS (Dirac)
 - Nuclear charge distribution correction (Breit-Schawlow)
 - Nuclear magnetisation distribution correction (Bohr-Weisskopf)
 - QED corrections
- At present uncertainty in the Bohr-Weisskopf correction due to core polarisation effects limits the comparison
- Combination with other measurements can eliminate this uncertainty
- Calculations are also continually improving

Experimental Aspects

- Load ions into cryogenic Penning trap at 4K
- Use σ -polarised light to avoid undesired optical pumping
 - But slow beneficial optical pumping will occur for F>0
- Detect fluorescence at laser wavelength
- Scan laser across resonance to give spectrum
- Weak signal expected due to ~ms lifetime
- Optimise light collection efficiency
- Minimise background counts

Practical points to consider

- Highly charged ions in the trap
 - Which ion?
 - Number of ions
 - Lifetime in trap
 - Temperature of ions
 - Further cooling?
 - Size of ion cloud
 - Doppler width

- Excitation of M1 transition
 - Availability of suitable laser
 - Power to saturate transition
 - Excitation rate achievable
 - Optical pumping of Zeeman states
- Detection of fluorescence
 - Pulsed or continuous?
 - Signal to background ratio
 - Width of resonance

Rough Estimates of Experimental Parameters

- e.g. ²⁰⁷Pb⁸¹⁺, 10⁵ ions at 4K (could be more)
- Thermal Doppler width at 4K for λ =1020 nm: 30 MHz
- Cloud size 0.5 mm
- 10 transitions per ion per second at saturation (τ =50 ms)
- Laser power to saturate: 0.25 mW
- Quantum efficiency of collection and detection: 0.2%
- Maximum signal 2000 counts per second in cw mode
 With background from scattered light
 - With background from scattered light
- If pulsed with 200 ms duty cycle, 1000 counts per second
 - With no scattered light background
- Resolution ~ 10⁷

Conclusion

- There is significant interest in measuring HFS in the 1s ground state of high-*Z* highly charged ions
 - A unique testing ground for QED and nuclear structure theory
- Measurements in a Penning trap could have advantages over previous beam and EBIT measurements
 - Cleaner environment; cold ions; higher precision
- Also possibility for establishing polarisation of nuclear spin
- The experiment is exciting but also challenging:
 - Signal could be low
 - Stability and lifetime of ions in the trap
- Application for funds from UK research council pending

