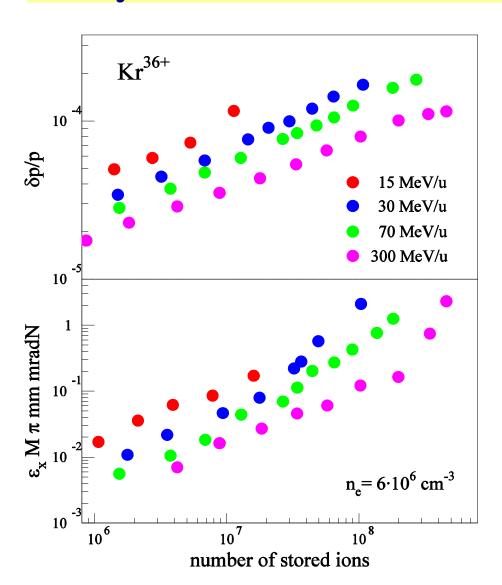

Beam Deceleration

cycle with ultraslow (charge changing $U^{92+} \rightarrow U^{91+}$) extraction for external experiments

standard deceleration cycle cooling before deceleration (~ 10 s) slow ramping (< 0.1 T/s) cooling at intermediate energy (~ 30 MeV/u) ultraslow extraction (option)

Deceleration Efficiency

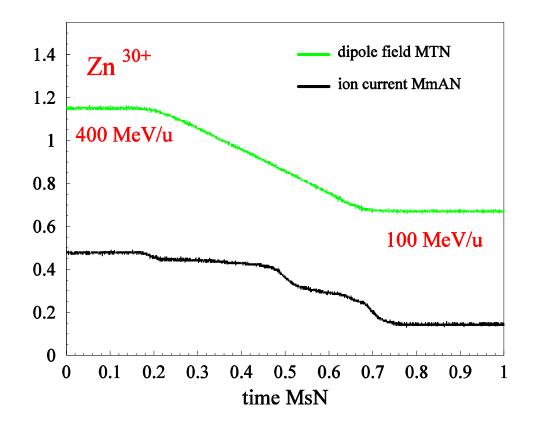

increase of losses with beam intensity

possible causes:

growth of phase space volume (adiabatic increase, intrabeam scattering) longitudinal compression due to bunching eddy current effects closed orbit distortions due to imperfections

maximum intensity after deceleration: 1×10⁸ instabilities, space charge limit?

Beam Parameters of Cooled Stored Heavy Ions after Deceleration



emittance and momentum spread determined by intrabeam scattering energy dependence from experiments:

 $\varepsilon \alpha (\beta \gamma)^{-4/3}, \delta p/p \alpha (\beta \gamma)^{-2/3}$

First Test of Fast Deceleration

ramping of the ring at a rate of 1 T/s

not available for experiments improve deceleration efficiency modifications of cooling concept/hardware

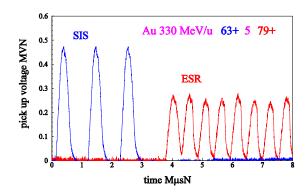
Recent Improvements

filling the ESR with one single SIS pulse full ramping capability for all power supplies twerage vacuum: 3×10^{-11} mbar

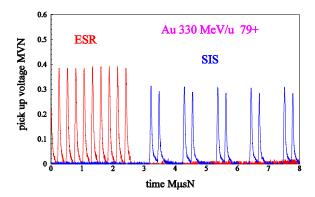
mproved diagnostics:

beam position during ramp fast (online) tune measurement

ast detector drives for experiments with stored ion event control of target and detectors drives


Future Improvements

oftware amping of electron cooler magnetic field nore flexibility in ramping parameters


iurther vacuum improvement ast extraction after deceleration letection of very slow ions

Fast Extraction from the ESR in the reinjection mode

injection of one bunch from SIS to ESR

reinjection of two bunches from ESR to SIS

high efficiency due to cooled beam

extraction at lower energy needs to be studied, kicker pulse limited to 3 µs

Status of Deceleration at the ESR

with uranium beam

typical injection energy: 300-400 MeV/u

for physics experiments:

deceleration to various energies in the range 20-120 MeV/u

experiments with stored and slowly extracted highly charged ions (charge changing extraction)

fast extraction at injection energy in reinjection mode

during machine development:

deceleration to 15 MeV/u: up to $10^6~\rm U^{92+}$ ions debunching/rebunching h=2 to h=4

deceleration to 9 MeV/u: cooling at two intermediate energies detectable, but unmeasurable beam intensity