THE HITRAP PROJECT AT GSI

(W. Quint, GSI)

European RTD-Network "HITRAP Facility"

<u>2001 – 2005</u>

- Total budget for four years (starting Nov. 2001): 1.9 Mio. EUR, mainly for personnel.
- Goal: development of novel instrumentation for experiments on HCI, including a decelerator, a cooler Penning trap, experimental set-ups and detectors for the investigation of the interaction of low-energy HCI with matter.

$\frac{\text{DECELERATOR LINAC FOR HITRAP AT GSI}}{\Rightarrow U. Ratzinger}$

HITRAP IN THE RE-INJECTION CHANNEL AT THE ESR

RE-INJECTION CHANNEL AT THE ESR: PRESENT SITUATION

HITRAP facility at the re-injection channel inside the ESR hall

Precision Trap

Platform for RF power-supplies and equipment (at height of 4 m)

Precision Experiments on HCI in Penning Traps

⇒ T. Beier

High-Precision Ion Trap Techniques:

- Single highly charged ion stored in Penning trap at T = 4 K
- Measurement of *ion cyclotron frequency* and of *Larmor* precession frequency of the bound electron with an accuracy on the 10⁻¹⁰ level

Bound-state QED and atomic-structure investigations: \Rightarrow G. Soff

- g-Factor of the bound electron in hydrogen-like ions up to U⁹¹⁺
- Fundamental constants (α, m_e)
- Nuclear moments, diamagnetic shielding, charge radii
- Determination of atomic binding energies via ion cyclotron frequency measurements in different charge states ⇒ T. Fritioff

Collision Studies with Slow Highly Charged Ions up to U⁹²⁺

Laser Spectroscopy and X-ray Spectroscopy with HCI

<u>Hyperfine-Transition in H-like lons:</u> \Rightarrow *R. Thompson*

- Nuclear properties (charge and magnetisation distributions)
- QED effects
- Atomic and nuclear polarization by optical pumping

X-ray spectroscopy with HCI: ⇒ A. Warczak

- Precision Measurements of Lamb shift
- Isotope shift, nuclear charge radii

Advantages of HITRAP as compared to ESR:

- Clean environment with efficient light collection
- lons nearly at rest, no Doppler-shift

GSI Future Accelerator Facility: HITRAP at the NESR

In addition:

• Experiments with trapped cold antiprotons:

exotic systems, CPT invariance

- ⇒ E. Widmann
- Gravitational studies with antihydrogen
 - \Rightarrow J. Walz, Poster

Conclusions:

- HITRAP will be a unique facility for bare and few-electron highly-charged ions up to U⁹²⁺ at very low energies
- The HITRAP Project is embedded in the EU-RTD Network "HITRAP Facility"
- Design and construction of decelerator linac and of cooler Penning trap is straightforward and under way.
- Installation of HITRAP Facility at re-injection channel in the ESR hall
- GSI Future Facility:

In addition, low-energy energy antiprotons will be available at NESR