Recent Developments in Nuclear Energy Functionals

Thomas J. Bürvenich¹

in collaboration with

I. N. Mishustin¹, C. H. Keitel², D. G. Madland³, J.A. Maruhn⁴, P.-G. Reinhard⁵, J. Evers², C. Müller², W. Greiner¹, ...

¹Frankfurt Institute for Advanced Studies, University Frankfurt/Main
 ²Theory Group, MPI for Nuclear Physics, Heidelberg
 ³Theoretical Division, Los Alamos National Laboratory
 ⁴Institute for Theoretical Physics, University Frankfurt/Main
 ⁵Institute for Theoretical Physics, University Erlangen/Nürnberg

ALMAS-1, 2006

Outline

- framework
- adjustment
- input from DBHF
- applications
- outlook

effective field theory

EFT

Strings ?

OCD

low energy degrees of freedom density functional theory

DFT

symmetries, power counting, scales, truncation

many-body approximations (mean field), parameters, ... Hohenberg-Kohn Theorem: nondegenerate ground-state energy of a many-body system is a unique functional of the local density

can go beyond literal mean field relativistic/non-relativistic Kohn-Sham scheme

goal: universal functional for finite, self-bound nuclei

Considerations for finite nuclei:

- spin
- relativistic systems (scalar/vector density)
- self-bound systems
- intrinsic density

 $\rho = \sum_{i} |\psi_i|^2$

- broken symmetries
- pairing, long-range effects

- ...

$$\left[\frac{-\hbar}{2m}\nabla^2 + V_{int} + V_{ext} + V_{xc}\right]\psi_i = \varepsilon_i\psi_i$$

looks like mean-field, but can go beyond literal mean field EFT + DFT = 'MF' (B. Serot)

correlation effects are present in energy and density (not in the wave function)

Extensions of the Hohenberg-Kohn theorem:

- QHD-I: C. Speicher, R. M. Dreizler, and E. Engel, Annals of Physics 213 (1992) 312
- intrinsic density: J. Engel, nucl-th/0610043
- functionals for other observables can be constructed as well (momentum space: Englert, Henderson, ...)

problems:

- true functional is probably very complicated, nonlocal, ...
- Hohenberg-Kohn theorem is nonconstructive (practice LDA)

 problems are not of principal but of practical nature

relativistic mean-field (RMF) model

free nucleons

$$\sum_{N} \mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi$$

pion:
$$\langle \pi \rangle = 0, \ 2\pi \approx \sigma$$

or self-interaction of scalar field

Adjusting the parameters of RMF/SHF models

observable	error	$^{16}\mathrm{O}$	$^{40}\mathrm{Ca}$	$^{48}\mathrm{Ca}$	56Ni	58Ni	$^{88}\mathrm{Sr}$	$^{90}\mathrm{Zr}$	$^{100}\mathrm{Sn}$	$^{112}\mathrm{Sn}$	$^{120}\mathrm{Sn}$	$^{124}\mathrm{Sn}$	$^{132}\mathrm{Sn}$	$^{136}\mathrm{Xe}$	$^{144}\mathrm{Sm}$	$^{202}\mathrm{Pb}$	$^{208}\mathrm{Pb}$	$^{214}\mathrm{Pb}$
$E_{\rm B}$	0.2~%	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+
$R_{ m dms}$	0.5~%	+	+	+	_	+	+	+	_	+	+	+	—		_	_	+	—
σ	1.5~%	+	+	+	—	_	_	+	_	—	_	—	—	_	_	_	+	—
$r_{ m rms}^{ m ch}$	0.5~%		+	+	+	+	+	+	_	+	—	+	—			+	+	+
$\Delta_{\rm p}$	$0.05 { m MeV}$	-	-	-	-	-	-	-	-	-	-	-	-	+	+	-	-	_
$\Delta_{ m n}$	$0.05~{\rm MeV}$	-	-	-	-	-	-	-	-	+	+	+	-	-	-	-	-	-

NL-Z2 PC-F1 SkI3,4

(one possibility)

- magic and doubly-magic (spherical) nuclei are chosen
- adjustment to both binding energy and form factor
- pairing strengths are adjusted simultaneously with the meanfield parameters

Overall performance

prediction adjusted

surface thickness

rms radius

diffraction radius

binding energy

- reconsideration of suitable fit nuclei
- consider ground-state correlation energies
- isotone chains (except N=28) appear to be favorable over isotope
- selection / availability of nuclear data is important
- new data from <u>NUSTAR@FAIR.GSI</u>

P.-G. Reinhard et al.

in progress

Relativistic and non-relativistic energy functionals with DBHF input

DBHF calculations by C. Fuchs, E. v. Dalen et al.

Fit to various asymmetries

DBHF + gradient + spin-orbit = high-quality model

218U126

Where nuclear excitations and lasers meet

Direct laser-nucleus interactions

$$E_N = \sqrt{(1+\beta)/(1-\beta)}E_L = (1+\beta)\gamma E_L$$
$$\nu_N = \sqrt{(1+\beta)/(1-\beta)}\nu_L = (1+\beta)\gamma \nu_L$$

combination of laser and beam facilities

The dynamical AC Stark shift in nuclei

- analogy to electronic dynamical Stark shift
- consider laser pulses at optical frequencies
- head-on collision of nuclei and laser pulses to achieve high intensities
- small interaction matrix elements $R \approx 2 10 \text{ fm}, \quad \langle m | z | n \rangle = \mathcal{O}(\text{fm})$
- mean-field model for description of nuclear structure

laser-nucleus interaction H_{I} =

$$H_I = e\mathcal{E}(t)z$$

electric dipole approximation

$$\mathcal{E}(t) = \mathcal{E}_0 \sin(\nu t)$$
 c.w.

2nd order PT
$$\Delta E_n = \frac{1}{4} \sum_{m,\pm} \frac{\langle n|H_I|m \rangle \langle m|H_I|n \rangle}{\epsilon_n - \epsilon_m \pm \hbar \nu + i\hbar \epsilon}$$

AC Stark shifts

Rabi oscillations between ground and excited states

 π pulse at I = 4 * 10²² W/cm²

$$^{223}\text{Ra}$$
 $\Delta E = 50.1 \text{ keV}$ $\tau(e) = 730 \text{ ps}$ $\mu = 0.12 \text{ e fm}$

- measure excitation function as the response of the nucleus with respect to laser parameters
- optical and modelindependent determination of nuclear transition frequency and dipole moment
- many nuclear systems available

Outlook

- mean-field models/nuclear density functional theory have reached high predictive power and increase our understanding of exotic nuclei
- laser-nucleus interactions: input from mean-field models
- systematic and controlled model developments combined with new experimental data are desirable
- an exciting future lies ahead of us