Time-Resolved Schottky Mass Spectrometry in the ESR Decay Studies in the ESR

Yuri A. Litvinov

20 October 2006

- Introduction

- Time-Resolved Schottky Mass Spectrometry
- Present Results on Half-Lives
- Future Perspectives

Production & Separation of Exotic Nuclei

Schottky Mass Spectrometry (SMS)

Broad-Band Schottky Frequency Spectra

Broad-Band Schottky Frequency Spectra

Broad-Band Schottky Frequency Spectra

Nuclear Decays of Stored Single Atoms

Time-resolved SMS is a perfect tool to study dynamical processes in the ESR

Nuclear electron capture, β +, β - and bound- β decays were observed

Nuclear Decays of Stored Single Atoms

F. Bosch, et al., Int. J. Mass Spectr. 251 (2006) 212-219

Identification of New Isotopes

F. Bosch, et al., Int. J. Mass Spectr. 251 (2006) 212-219

Half-Lives of Nuclear Isomers

Neutral atom is 0.49(2) s Fully ionized atom is 11(1) s

 $\frac{T_{1/2} \text{ (fully ionized)}}{T_{1/2} \text{ (neutral)}} = 22(2)$

Isomer	T _{1/2} bare, s	T _{1/2} neutral, s	Hindrance factor
^{151m} Er	19(3)	0.58(2)	33(5)
^{149m} Dy	11(1)	0.49(2)	22(2)
^{144т} Тъ	12(2)	4.25(15)	2.8(5)

Yu.A. Litvinov, et al., PLB 573 (2003) 80-85

Half-life of Fully-Ionized ^{207m}Tl⁸¹⁺

D. Boutin, PhD Thesis, JLU Giessen, 2005

T. Ohtsubo et al., Phys. Rev. Lett. 95 (2005) 052501

Bound-State β**-decay**

providing larger Q values enhancing stellar β decay rates altering β chronometers modifying s-process branching points

$\frac{\text{Bound-State }\beta\text{-decay in }^{206,207}\text{TI}}{\frac{1000}{207}}$

Bound-State β -decay of ¹⁸⁷Re

Hubble Ultra Deep Field Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, S. Beckwith (STScI) and the HUDF Team

STScl-PRC04-07a

F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

Bound-State β -decay of ¹⁸⁷Re

The 7 Nuclear Clocks for the Age of the Earth, the Solar System, the Galaxy, and the Universe

clock	T _{1/2} [10 ⁹ y]
⁴⁰ Κ/ ⁴⁰ Ar (β)	1.3
²³⁸ UTh ²⁰⁶ Pb (α,β)	4.5
²³² ThRa ²⁰⁸ Pb (α,β)	14
¹⁷⁶ Lu/ ¹⁷⁶ Hf (β)	30
¹⁸⁷ Re/ ¹⁸⁷ Os (β)	42
⁸⁷ Rb/ ⁸⁷ Sr (β)	50
¹⁴⁷ Sm/ ¹⁴³ Nd (α)	100

Clayton (1964): a mother-daughter couple (¹⁸⁷Re/¹⁸⁷Os) is the "best" radioactive clock

F. Bosch et al., Phys. Rev. Lett. 77 (1996) 5190

Bound-State β -decay of ¹⁶³Dy

s process: slow neutron capture and β - decay near valley of β stability at $kT = 30 \text{ keV}; \rightarrow \text{high atomic charge state} \rightarrow \text{bound-state } \beta$ decay

branchings caused by bound-state β decay

M. Jung et al., Phys. Rev. Lett. 69 (1992) 2164

Next Step: Bound-State β-decay of ²⁰⁵Tl

Simple theoretical estimation:

R.B. Firestone, Table of Isotopes, 1996 **Gamow-Teller transition** $1^+ \rightarrow 0^+$ β + to EC branching ratio:

$$\lambda_{\beta+}/\lambda_{EC}$$
 (neutral atom) ≈ 1

W.Bambynek et al., Rev. Mod. Phys 49, 1977 **S-electron density at the nucleus:**

 $|f_{S}(0)|^{2} \propto 1/ n^{3}$

 P_{EC} (neutral atom) $\propto 2 \sum 1/n^3 = 2.4$

 P_{K} (H-like) $\propto 1 * 1/1^{3} = 1$

λ_{β+}/λ_κ (H-like) ≈ 2.4

Conclusion: H-Like ion should have 41% longer half-life

G.Audi et al., NPA729 (2003) 3 λ (neutral) = 0.00341(1) s⁻¹ Decay of fully-ionized ¹⁴⁰Pr: $\lambda_{\beta+} = 0.00172(7) s^{-1}$ Decay of H-like ¹⁴⁰Pr: $\lambda_{K} = 0.00213(19) s^{-1}$

J. Kurcewicz, N. Winckler et al., in preparation

Gamow-Teller transition $1^+ \rightarrow 0^+$

S. Typel and L. Grigorenko

 $\mu = +2.7812\mu_{N}$

Z. Patyk

Probability of EC Decay

Neutral ¹⁴⁰Pr: **P** = 2.381

He-like ¹⁴⁰Pr: **P** = 2

H-like ¹⁴⁰Pr: P = 3

Theory: The H-Like ion should really decay 20% faster than neutral atom!

B.M. Dodsworth et al., Phys. Rev. 142 (1966) 638.

 μ (⁶⁴Cu) = -0.217(2) nm

1/2

3/2

⁷₃Li

73 fs

stable

1345.75 10.44(4) %

0 89.56(4) %

Ionization of ⁷Be in the Sun can be ~ 20-30 %

Single-Particle Decay Spectroscopy

Sensitivity to single stored ions

Recording the correlated changes of peak intensities corresponding to mother and daughter ions

Reliable determination of the number of a few stored particles

Investigation of a selected decay branch, e.g. pure electron capture decay

Systematical effects such as late cooling or feeding via atomic or nuclear decays can be disentangled

F. Bosch et al., Int. J. Mass Spectr. 251 (2006) 212

Summary and Future Plans

- β^+ decay of bare nuclei

H.Irnich et al., Physical Review Letters 75 (1995) 4182-4185

- Half-lives of highly-converted isomeric states in bare nuclei Yu.A. Litvinov et al., Physics Letters B573 (2003) 80-85
- First Direct Observation of Bound-State β decay
 - T. Ohtsubo et al., Physical Review Letters 95 (2005) 052501
- EC and β^+ decay of hydrogen-like ¹⁴⁰Pr ions
 - J. Kurcewicz, N. Winckler et al., in preparation
 - Half-life measurements of exotic nuclides
 - C. Scheidenberger et al., GSI Proposal E055
 - α decay of bare nuclei
 - A. Musumarra et al., GSI Proposal 2006
 - Bound-state β decay in ^{205}Tl
 - F. Bosch et al., GSI Proposal E069
 - EC and β⁺ decay in ⁶⁴Cu Yu.A. Litvinov et al., GSI Proposal, in preparation
 - Single Particle Decay Spectroscopy of ¹⁴⁰Pr and ¹⁴²Pm Yu.A. Litvinov, F. Bosch et al., GSI Proposal, submitted

ILIMA: Isomeric beams, Lifetimes, and Masses

Decay Studies in the ESR

G.Audi, L.Batist, K.Beckert, F.Bosch, D.Boutin, C.Brandau, Th.Buervenich, L.Chen, I.Cullen, C.Dimopoulou, H.Essel, B.Fabian, T.Faestermann, B.Franczak, B.Franzke, H.Geissel, M.Hausmann, P.Kienle, O.Klepper, R.Knöbel, C.Kozhuharov, K.-L.Kratz, R.Krücken, J.Kurcewicz, S.A.Litvinov, Yu.A.Litvinov, Z.Liu, M.Mazzocco, L.Maier, F.Montes, I.Mukha, G.Münzenberg, A.Musumarra, C.Nociforo, F.Nolden, T.Ohtsubo, A.Ozawa, Z.Patyk, B.Pfeiffer, M.Pfützner, W.R.Plass, C.Scheidenberger, M.Shindo, J.Stadlmann, M.Steck, Th.Stöhlker, K.Sümmerer, B.Sun, T.Suzuki, S.Typel, P.M.Walker, H.Weick, N.Winckler, M.Winkler, T.Yamaguchi

