Exotic isomeric states

Phil Walker University of Surrey

- extreme isomers
- isomer beams
- atomic-nuclear interface
- induced isomer decay

Picasso 1955 Don Quixote: Cervantes 1605

atomic-nuclear interface

vital role of orbiting electrons

atomic-nuclear interface

Well known

Atomic hyperfine structure and isotope shifts Electron capture (EC) Internal electron conversion (IC) Bound-state β decay **Barely known** Nuclear excitation by electronic transition (NEET)¹ Bound-state internal conversion (BIC)² **Unconfirmed**

Nuclear excitation by electron capture (NEEC)³ α decay rate modification via electron screening⁴

References: ¹Kishimoto et al., Phys. Rev. C74 (2006) 031301(R) ²Carreyre et al., Phys. Rev. C62 (2000) 024311 ³Palffy et al., Phys. Rev A73 (2006) 012715 ⁴Kettner et al., J. Phys. G32 (2006) 489

Extreme isomers ($T_{1/2} > 5$ ns)

long half-life	e: ¹⁸⁰ Ta, 9 ⁻ , 75 keV, >10 ¹⁵ y	PRC 1985
high spin**:	²¹² Fr, 34 ⁺ , 8.5 MeV, 24 µs	PRC 1990
high energy	*: ¹⁵² Er, ~36, 13 MeV, 11 ns	PRC 1992
low energy*	: ²²⁹ Th, 3/2 ⁺ , ~5.5 eV, ~10 h?	PRC 2005
p rich:	⁹⁴ Ag, 21 ⁺ , 5.8 MeV, 300 ms	Nature 2006
n rich:	¹³⁰ Cd	preliminary
high mass:	²⁷⁰ Ds, (10 ⁻), ~1 MeV, ~6 ms	EPJA 2001
	²⁵⁴ No, ~16, ~2.5 MeV, 184 μs	Nature 2006
		4 · · · · · · · · · · · · · · · · · · ·

* unbound to both p and n emission
* no fission: Walker et al., ZPA 1997
* Flambaum, PRL97 (2006) 092502

⁵³Co proton decay (1.56 MeV)

first example of proton radioactivity

[Jackson et al., Phys. Lett. B33 (1970) 281]

⁹⁴Ag (21⁺) proton decay

[Mukha et al., Phys. Rev. Lett. 95 (2005) 022501]

Coulomb and centrifugal barriers

A ~ 100, *l* ~ 5ħ

neutron radioactivity

unique to isomers?

neutron-decay isomer candidates

involving a high level of speculation

⁶³Ti, ⁶⁷Fe, ¹²¹Zr: Peker et al., Phys. Lett. B36 (1971) 547 Bugrov et al., Sov. J. Nucl. Phys. 42 (1985) 34 SPIRAL-2 Physics Case (2006) p19-20
¹⁸⁷Hf: Walker, AIP Conf. Proc. 819 (2006) 16

ESR: single-ion in-ring decay

[Litvinov et al., Nucl. Phys. A756 (2005) 3]

photon-induced isomer de-excitation

a unique aspect of isomers

conceptual picture:

photon-induced isomer de-excitation

a unique aspect of isomers

nuclear batteries?

γ-ray lasers?

astrophysics implications?

¹⁸⁰Ta photoexcitation and decay

[Belic et al., Phys. Rev. Lett. 83 (1999) 5242]

¹⁸⁰Ta photoexcitation and decay

[Walker et al., Phys. Rev. C64 (2001) 061302(R)]

isomer target vs. isomer beam

some potential isomer beams

Seniority coupling scheme

[Ressler et al., Phys. Rev. C69 (2004) 034317]

"Enhanced nuclear level decay in hot dense plasmas"

the angular-momentum dimension with ²³⁸U projectile fragmentation

[Podolyak et al., Phys. Lett. B632 (2006) 203]

isomer beam purification

[Y. Litvinov, private comm.]

summary

many isomers with $T_{1/2} > 500$ ns

opportunities to explore exotic physics *neutron radioactivity induced isomer decay* and many reactions

Special thanks to: Zsolt Podolyak (Surrey), Furong Xu (Beijing), Jeff Carroll (Youngstown), Pete Thompson (AWE), Yuri Litvinov (GSI)