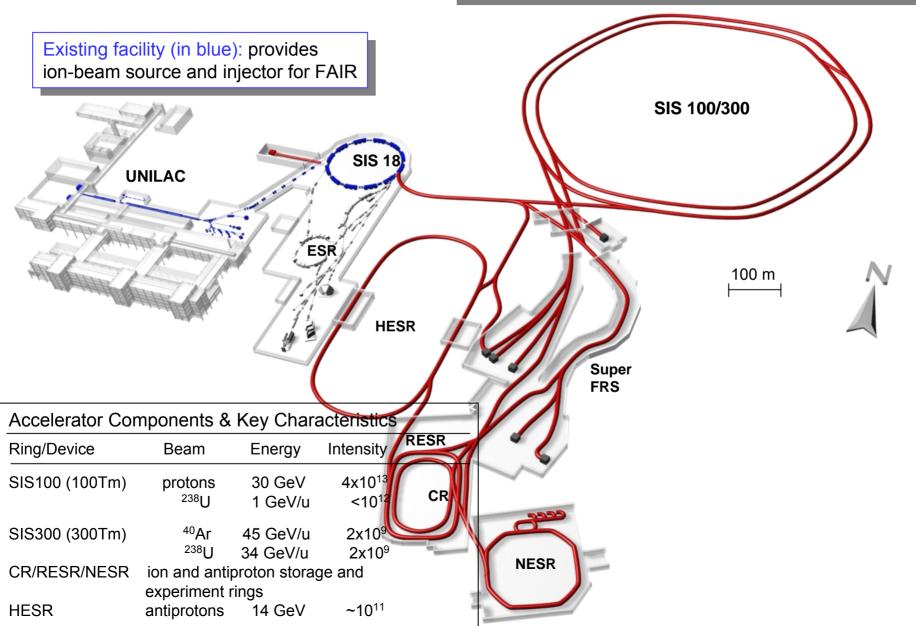
Status of the FAIR-Project

- International Committee Structure
- On the Way for Project Approval
- R&D for FAIR

E

HELMHOLTZ


GEMEINSCHAFT

Status of Civil Construction Preparations

The FAIR Facility

New future facility (in red): provides ion and anti-matter beams of highest-intensity and up to high energies

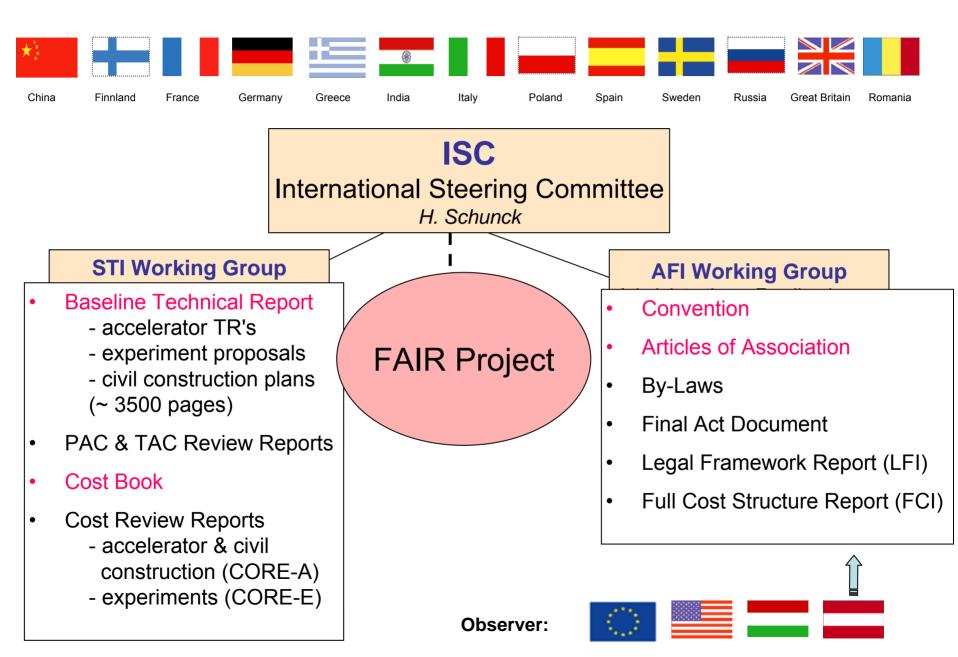
Unprecedented System Parameters at FAIR

Beam Intensity:

- primary heavy-ion beam intensity increases by x 100 x 1000
- secondary beam intensity increases by up to x 10000
- **Beam Energy:**
 - heavy-ion energy : x 30
- **Beam Variety:**
 - antiprotons
 - protons to uranium & radioactive ion beams

Beam Precision:

- cooled antiproton beams
- intense cooled radioactive ion beams


Beam Pulse structure:

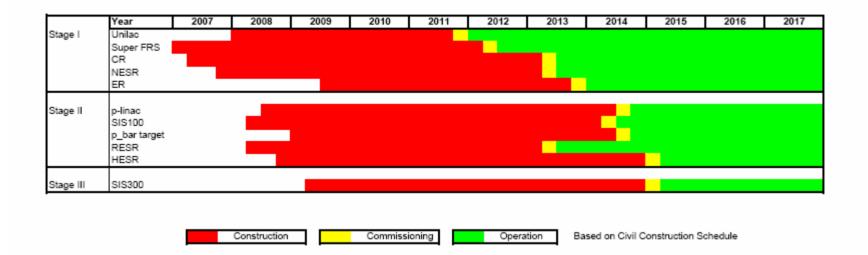
- highly optimized for experiments: from dc to ultra-high bunch compression

Parallel Operation:

- full accelerator performance for up to four different and independent experiments and experimental programs

The International Committee Structure

The FAIR Baseline Technical Report


Project Status cont'd

The International Steering Committee confirmed all this joint preparatory work as

" the Project".

Consequence: all conditions to finalize negotiations on governmental level are met.

Time Schedule

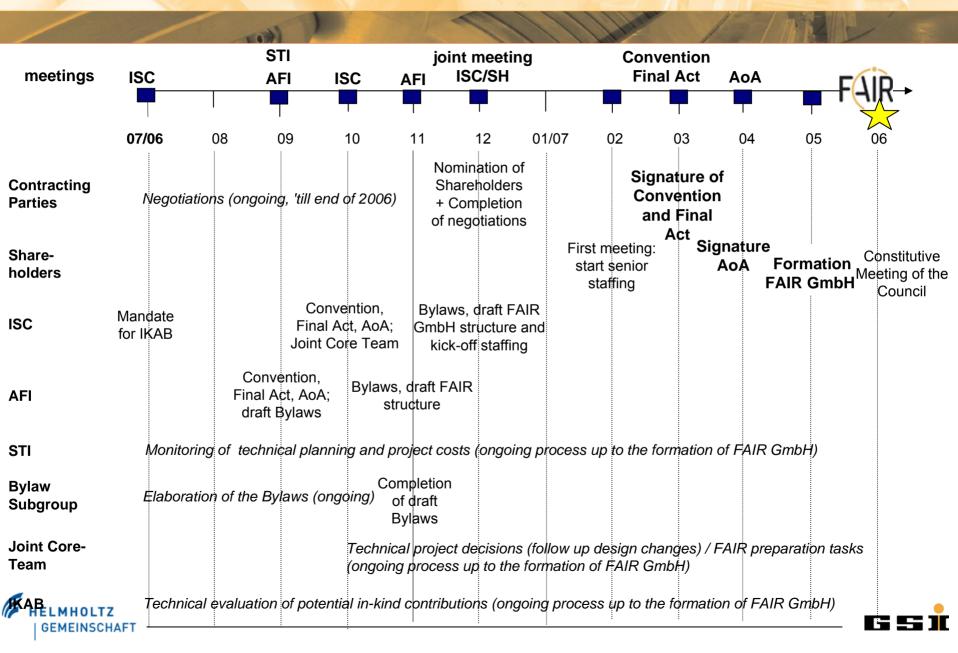
First experiments scheduled for beginning of 2012 (Super-FRS) – Phase I End of project scheduled for beginning of 2015

Schedule determined by civil construction progress

Project Costs

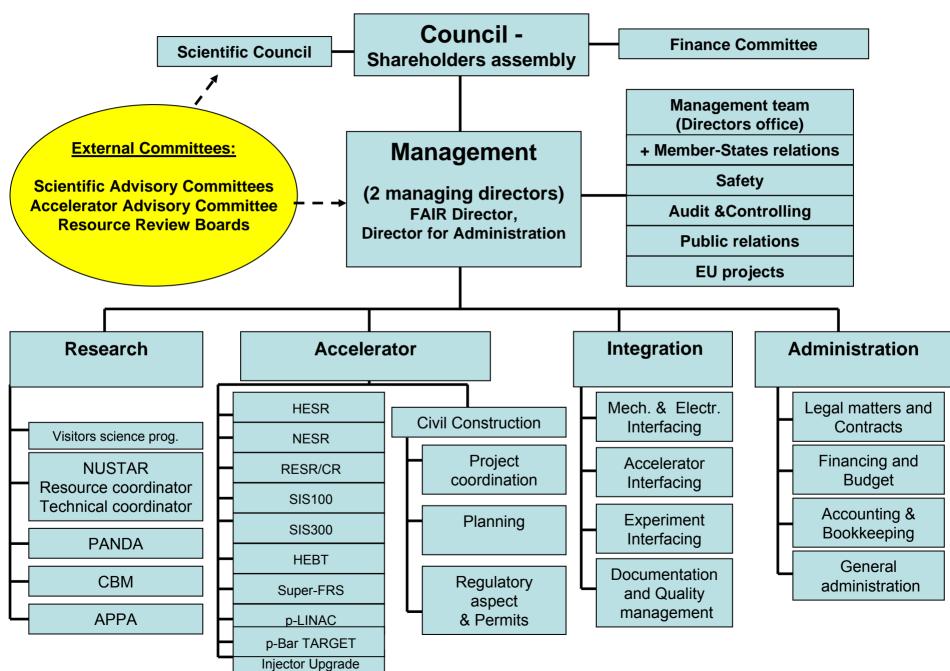
Sum

Operation Costs until 2025

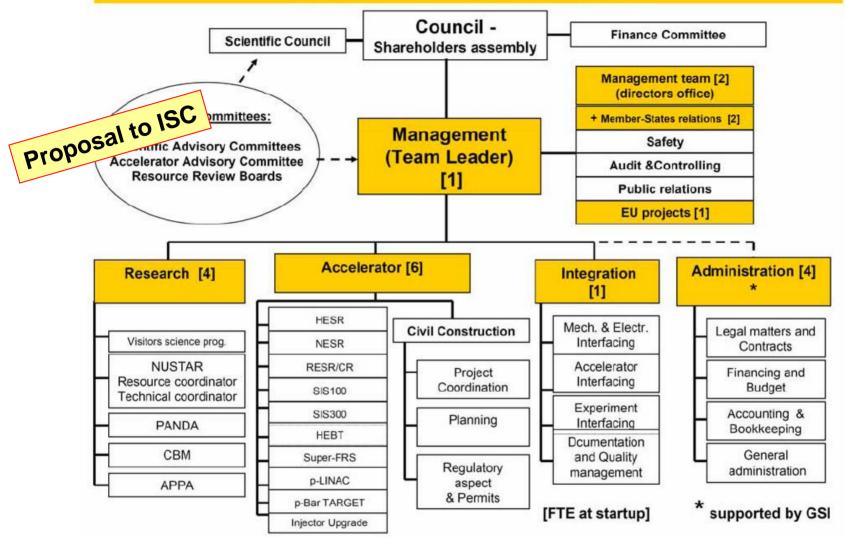

26,5 M€ <u>1485,6 M€</u> 2697,6 M€

Project Status

- ✓ Regional Development plan (Bebauungsplan) legally settled
- ✓ All environmental impact studies are accepted
- \checkmark Call for Construction Steering and Planning Offices
- ✓ Controlling report for the preparatory phase accepted by GSI Supervisory Board (60 M€ available for the preparatory phase 2001 – 2008)
- ✓ Prototyping has started
- ✓ Core facility defined
- ✓ Layout defined
- ✓ Scientific base program defined
- ✓ Project cost estimates (cost book, WBS) scrutinized and validated by expert groups
- ✓Legal documents and Governance structure (two-company model) finalized and agreed upon by the ISC (by-laws to be completed)


Goal: foundation of FAIR GmbH in May/June 2007

Proposed FAIR – Roadmap: Establishment of FAIR GmbH



GSI

Proposed Organization Chart of the FAIR GmbH

DRAFT: FAIR Joint Core Team

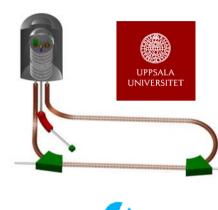
Functions to be taken over by the Core Team are marked in orange. Numbers in brackets

will work until die Council nominates the positions in FAIR GmbH

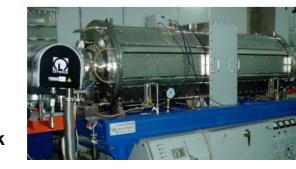
Ieading box is indicated in orange (e.g. Accelerator). **HELMHOL** The dashed line to the Administration indicates that the Administration branch is not intended **GEMEINSC** to belong to the proper Core Team in the sense of line management (cf. text).

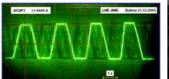
R&D on Key-Components during Preparatory Phase by GSI & Partner Institutes

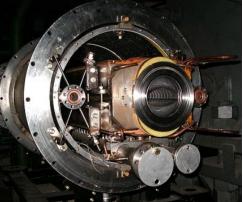
SIS300 sc magnets



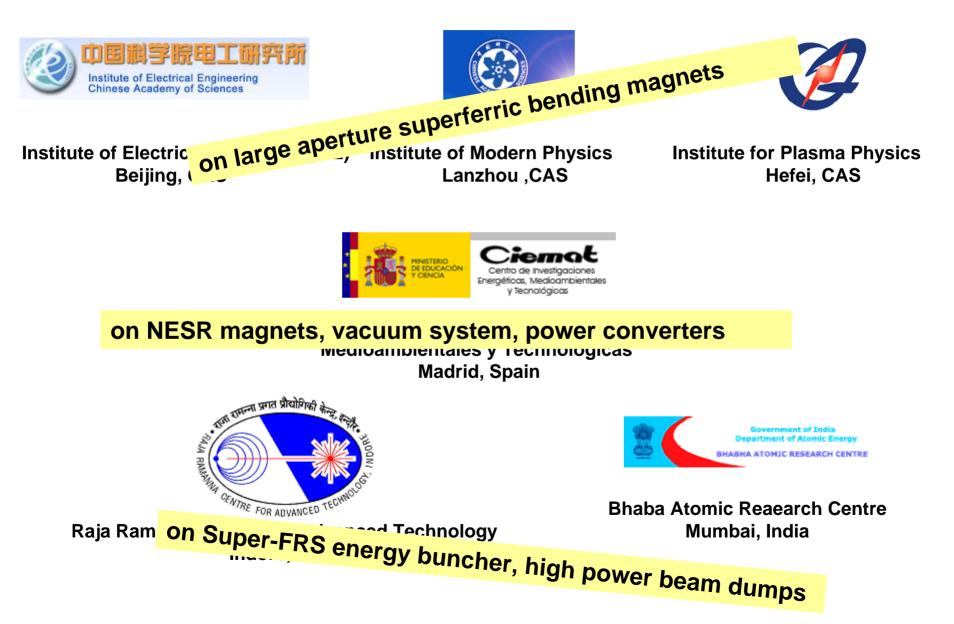
IHEP Protvino CNA / CNRS

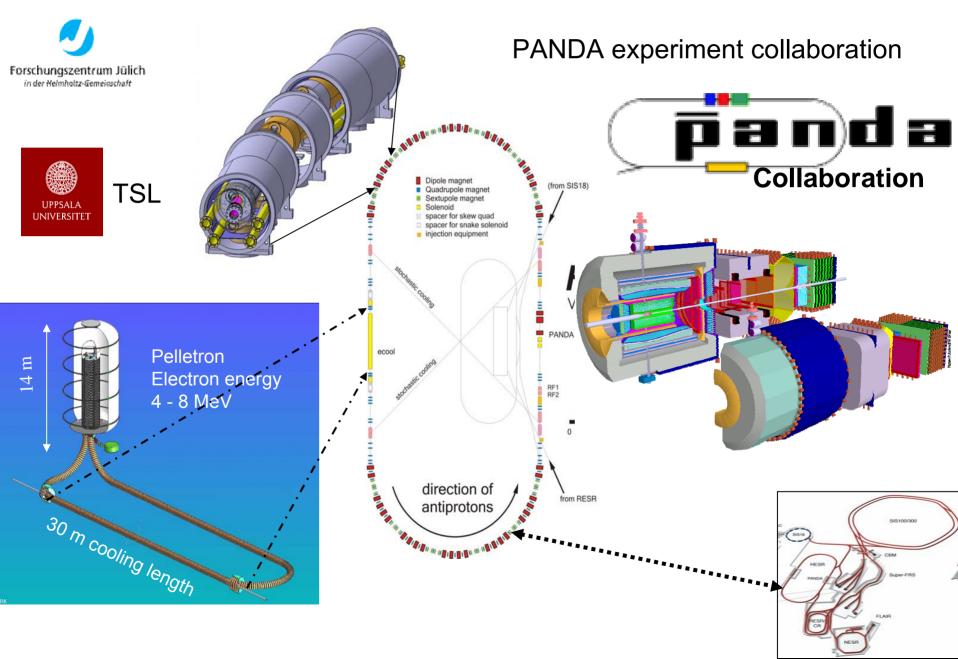

NESR Electron Cooling


Forschungszentrum Jülich


Variable frequency ferrit loaded cavities

SIS100 rapidly cycling sc magnets





R&D Collaboration Partners cont'd

HESR Consortium FZ Jülich, TSL Sweden and the

Status of Technical Negotiations

FAIR China: prototype of CR and Super FRS dipole magnets R&D **Finland:** looking into appropriate Polish contributions France: Technical discussions on proton source and SIS300 dipole magnets Germany: Continuous work on HESR, GSI active on all fields Greece – no contacts India: production of 4 sc dipoles for energy buncher, discussions on p-linac components Italy: R&D work on SIS300 has started (INFN) **Poland**: looking into appropriate Polish contributions Russia: R&D contracts with BINP (Novosibirsk) on radiation resistant nc dipoles & guadrupoles (SFRS target area) design of ER ring antiproton target sc septum magnets production of components for SIS18 upgrade (chambers, collimator) design of ferrit loaded cavities (and prototype) with **JINP (Dubna)** development of low loss rapid cycling dipoles and guadrupoles for SIS100 with IHEP (Protvino)

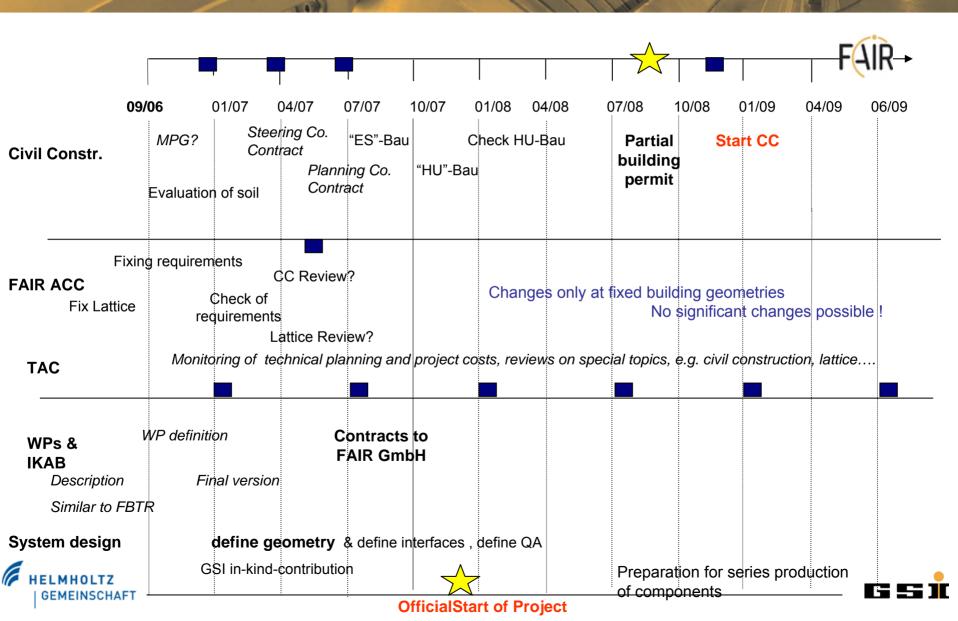
study on SIS300 dipoles

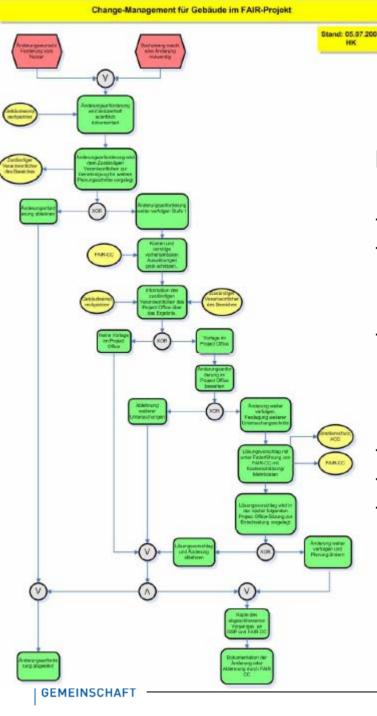
Romania: looking into appropriate Polish contributions

Spain: NESR magnets, power supplies, vacuum

Sweden: Cryring for FLAIR experiments

UK: involved in various experiments (NuSTAR, PANDA), plans for active participation of accelerator experts


FAIR: Work Packages


FAIR WPs

											-					
		WBS 2.3 HEBT	2.4 Supere FRS	2.5 CR	2.6 NESR	2.7 p-lianc	2.8 SIS100	2.9 pbar-target	2.10 RESR	2.11 HESR	2.12 SIS300	2.13 ER	2.14 Com. Sys.	3.0 Civ. Constr.	1.0 Experiments	Sum
	CostBook 3.0 (MŪ)	79,2	72,9	37,8	23,4	13,5	81,9	4,5	20,7	59,4	95,4	11,7	104,4	289,8	108	1002,6
-2	Magnets	Bend	Bend	Bend	Bend	Bend	Bend	Bend	Bend	Bend	Bend	Bend				
	Cost Who	12,2	15 China	9 China	4 Es	0,22	7 Rus	0,7	4	S & G	24 RUS & I			GSI		
		Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad				
		14	23	2,2	2,7 Es	0,7	8 Rus	0,7	2,6		19 Rus & F					
			Sextupoles	Sextupoles	Sextupoles	┟────┤	Sextupoles			Sextupoles	Multipoles	Sextupoles				
			.8	0,5	0,4	, I	1,1				7					
		Other	Other	Other	Es Other	4 '	Rus Other			Other	RUS & I Other	other				
		3	3,3	1,5	0,4	·	1,3		0,4	Other	0,6	other				
	David Carrier	Deven Oran	Denne	Development			Rus				Rus	0				
3	Power Converter	Power Conver 16	Power Convei 3	Power Convei 2,4	ower Converte 2,3	ower Converte	ower Converte	ower Converte 1,1	ower Converte 2,4	ower Convertg	ower Convert 5,2	ower Converte	r			
			-		Es			.,.								
4	RF-System			RF 4,4	RF 3,8	RF 7	RF 31		RF 0,1	RF	RF 6,8	RF				
				4,4	3,0	/ Ind./Rus/G	Rus		GSI		o,o Rus					
-5	Inj/Extraction			Inj/Extr.	Inj/Extr.		Inj/Extr.		Inj/Extr.	Inj/Extr.	Inj/Extr.	Inj/Extr.				
				3,5	2		6 Rus		3		7 Rus					
-6	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics				
		10	4,5	2	1,8	1,3	5,5	0,3	1,8		5,4					
-7	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum				
		12	5,4	3,4	3,4	0,7	8	0,7	2,9		8					
				• •												
-8	Part Sources			l	Es	E7R						Linac				
-8	Part. Sources				És	EZR 0,7			100	11		Linac			1	
	Part. Sources			L	És	EZR 0,7 F		indi	ated	!!	l	Linac			1	
	Part. Sources			L	És ECOOL 2,7	EZR 0,7 F	est	indi	cated	11 LCOOL]	Linac			1	
9	Part. Sources ECOOL				És ECOOL 2,7 Rus	EZR 0,7 F	erest	indi	cated	LCOOL]	Linac			1	
-9	Part. Sources ECOOL St. Cooling			St. Cool	ECOOL 2,7 Bur	EZR 0,7 F	erest	indi	st. Cool	LCOOL St. Cool		Linac			1	
-9 -10	Part. Sources ECOOL St. Cooling			St. Cool	ECOOL 2,7 Bur - jUS	EZR 0,7 F	erest	indi	St. Cool 3,8 GSI	LCOOL St. Cool		Linac			I	
-9 -10	Part. Sources ECOOL St. Cooling Special inst.	See	dec	St Cool	ECOOL 2,7 Bun - jus	EZR 0,7 F	special	special	St. Cool 3.8 GSI	LCOOL St. Cool		Linac			, 	
-9 -10	Part. Sources ECOOL St. Cooling Special inst.		dec	St Cool	Ecool 2,7 But - jus	EZR 0,7 F st inter Special 0,3	special 2	special 0,8	St. Cool 3,8 GSI	St. Cool		Linac			, []	NP for discuss
-9 -10 -11	Part. Sources ECOOL St. Cooling Special inst. Local Cryo	loting	dec	St Cool ided	Es ECOOL 2.7 But - jus	EZR 0.7 F st int Special 0,3	Special 2 Local Cryo	Special 0,8	St. Cool 3,8 GSI	St. Cool	Local Cryo	Linac	Refrigerator	1		NP for discuss
-9 -10 -11	Part. Sources ECOOL St. Cooling Special inst. Local Cryo	loting	dec 6,3	St Cool ided	Es ECOOL 2.7 But	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool	Local Cryo 12	Linac	49			NP for discuss
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2.7 But - jus	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool		Linac	49 GSI	es		
9 10 11 12	Part. Sources ECOOL St. Cooling Special inst. Local Cryo	loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 But JUS	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfac 24	es		NP for discuss
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar JUS	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfac 24 GSI	es		
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfac 24 GSI uench Detecti	es		
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0,7 F st int Special 0,3	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI pntrols/Interfac 24 GSI uench Detecti 2,1	es		
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0.7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI phtrols/Interfac 24 GSI uench Detecti 2,1 Magnet QC	es		
9 10 11 12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0,7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI pntrols/Interfac 24 GSI uench Detecti 2,1	es on		
9 -10 -11 -12		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0,7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI phtrols/Interface 24 GSI uench Detecti 2,1 Magnet QC 7,2 GSI Alignment	es bn		
-9 -10 -11 -12 -14		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0,7 F st int Special 0,3	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfact 24 GSI uench Detecti 2,1 Magnet QC 7,2 GSI Alignment 5,5	es bn		
-9 -10 -11 -12 -14	Common System	loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bar - jUS	EZR 0,7 F	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfact 24 GSI uench Detecti 2,1 Magnet QC 7,2 GSI Alignment 5,5 GSI EI. Power	es bn		
-9 -10 -11 -12 -14		loting	dec 6,3	St Cool ided Local Cryo 3,1	Es ECOOL 2,7 Bur - jus	EZR 0,7 F Special 0,3	Special 2 Local Cryo 6,8	Special 0,8	St. Cool 3,8 GSI	St. Cool			49 GSI ontrols/Interfact 24 GSI uench Detecti 2,1 Magnet QC 7,2 GSI Alignment 5,5 GSI	es bn		

Roadmap: Civil Construction and Accelerators

Change Parameter Proceedure - not only for Civil Construction

Expectation to experiments:

- Fix definition of buildings now
- End of 2006/beginning of 2007 letzte last iteration changes to loadliststo FAIR CC until mid November requirmenets on LHe, LN2, energie,cooling water.
- Definition of interfaces accelerator- experiment location/beam parameters (Spiller/Ratschow) until end Oct.
- Change management:
- aiming to safe 10% in costs
- document changes to Bung-drawings/study

Here we need your input

Eirst experiments at Super-Eirst experiments at

Thank you

