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Ultrahigh-Precision Mass Spectrometry
Introduction
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Mass — Binding Energy — Forces

The atomic mass of an isotope is given by:
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— binding energy
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= high-accuracy mass measurements allow one to determine the
atomic and nuclear binding energies

= the nuclear binding energy reflects all forces (strong, electro-
magnetic and weak interactions) acting in the nucleus

= the atomic binding energy reflects the electro-magnetic force
acting between the electrons and between the electrons and the

nucleus.



Information on Nuclear Ground State Properties & . l
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Comparison: Charge Radii — Nuclear Binding Energies

Is the mass more sensitive to nuclear structure effects than the information
obtained by optical techniques (spin, moments, charge radii)?
Examples : Rb and Hg isotopes
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Nuclear forces maximize nuclear binding energy irrespective of shape or configuration.
Nuclear Binding: some MeV per nucleon (1 GeV) — 103, 83E/E £1% — dm/m <10




Laser Spectroscopy — Mass Spectrometry

Laser Spectroscopy

Mass Spectrometry

Techniques many, often specialized: many, quite general:
fluorescence, MOT; colinear, decays, reactions, Penning
resonance ionization (mass) trap, storage ring, cyclotron,
spectroscopy, ...... | ceues

Goal spin, nuclear moments, mass — nuclear &
charge radii atomic binding energy

Calibration well known transitions, well known masses,

frequency comb

carbon cluster comb

Ultimate accuracy
determined by

observation time —
atomic lifetime

observation time —
nuclear half-life

Sensitivity

~ 1 atom/second

~ 1 atom/second

Limitation

detection efficiency, charge

radii of light isotopes

not resolved isomers,
space charge by isobars




Requirements for Mass Spectrometry
in Different Research Areas

5m/m required
resolving power

General physics & chemistry <10~ 104
Nuclear structure physics 10-6 10°

- separation of isobars
Astrophysics <10~ 106

- separation of isomers
Weak interaction studies 10-8 107
Metrology - fundamental constants | <10 108
CPT Tests < 10-10 10°
QED in highly-charged ions < 10-11 1010

- separation of atomic states

For radioactive isotopes, a resolving power of > 106 is required in order to discriminate
between ground and isomeric states.




The Two Ways:  ISOL Fragmentation - =& ‘")

accelerator

1 GeV protons, 1 GeV/u
light ions heavy ions
thick production e thin
F target
—— — ./ ion source , —
high intensities for low intensities
long-lived isotopes 100 lkeV 1 Gdviu
limitation at limitation only
T,,<10 ms electromagnetic atT,,<1us

high beam quality separation low beam quality
no refaractory all elements
elements Ny
rejection of
contamination by »~ Dostaccelerator isobars by g/m

isobars Pt identification

highly-charged ions

decellerator

singly-charged ions
some MeV at rest

ISOL and fragmentation facilities are complementary I



The Present GSI Heavy-lon Accelerator Fa il j.‘y 5‘:
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The ISOLDE Facility at CERN

Rb Yield

target - ion source

proton beam
(1 GeV)

analysing magnet

radioactive ion beams

Proton Beam

Robot Control

3 pA protons

auf 55g/cm?

ThC

" Bohr-Weis skopf

A

10"

10

> 70 elements, > 600 isotopes

SEIEIEIRE
L5 & - | 3|5
oo g e8| [2]2
zln g B|@| E|2
ol 8§ §|&| |mmf
o m|E|e|s|F| |2|d
° 5382 |3]5
8 3/2/2] [e]s
25 z 5l& S| 5
25 8 &|=| |&]f
" 228 -
%% C o | o E| o
0m = F | o=
® s 2|8 z|>
R >|2|le| [&]g
R F N S| E
- FIIR
3285 |&|8|F°
= (SRS i -




Principle of Storing and Cooling

Radial force Harmonic potential
e T ~
electric fields harmonic
oscillation
magnetic fields 2 or 3
light fields independent
eigen

frequencies
“infinite” storage time

Cooling

decrease of
oscillation
amplitude

reduction
of trap
imperfections
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Storage Devices

PENNING and PAUL TRAP

particles at nearly rest in space

many cooling techniques

STORAGE RING

FROM SIS
OR FRS

RFE-CAVITY

GAS JET

SCHOTTKY ¥
DETECTOR

ELECTRON COOLER

FAST KICKER

RF-CAVITY

relativistic particles
electron, stochastic, laser cooling



Single-lon Sensitivity p '
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Principle of Mass Measurements in Penning Traps

Confinement of ions
in a strong magnetic field of
known strength B

Mass measurement via
determination of
cyclotron frequency

v, = (q/m)-(B/2r)

from characteristic motion
of stored ions

Example
ION SOURCE: B=6T, q=1, m=100u > v.=1 MHz
stable isotopes
radioactive isotopes T. =1s:Av =1Hz
highly charged ions obs ¢
electrons — 4106 = 10-8
antiprotons —> R =10°and om/m =10




Absolute Mass Measurements of Radionuclides
by Use of Carbon Cluster

cluster ion source
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Penning Traps at Accelerators for Mass Spectrometry

SHIPTRAP |
HITRAP | 3 : /

....... m{..._.__..___,___*_‘_'_‘?_E_!‘!_TRAP___ [ 8 e

ISOLTRAP
ATRAP

e operating facilities o facilities under e planned facilities
construction or test
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Complementarities of Penning Traps for Mass Spectrometry

Type of
reaction or
facility

ISOL-
TRAP

CERN

CPT

Argo.

SHIP-
TRAP

GSI

JYFL-
TRAP

Jyvaskyla

LEBIT
MSU

MAFF-
TRAP

Munich

TITAN

TRIUMF

HITRAP

GSI

MATS

GSI

ISOL

X

fusion

IGISOL

fragmen-
tation

fission by
neutrons

highly-
charged
ions

<1o40
accuracy

X

e operating facilities

e facilities under

construction or test

e planned facilities

the masses of about 700 isotopes were measured up to now by use of Penning traps
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How to Reach Highest Accuracy?

Use

* single ion stored in the Penning trap
 a highly charged ion

« a high-field superconducting magnet

* self-shielded superconducting magnet
 storage at low temperature

* long observation time

Avoid

* fluctuations of external magnetic fields
» changes of pressure

» changes of temperature

Presently reached: 10-11 for singly charged ion

10—10
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HITRAP at the Experimental Storage Ring ESR =

UNILAC

high-accuracy
Penning trap for
mass spectroscopy

lons from
HITRAP

K. Blaum et al.

cooler

~—— Penning —

trap

23892+ 23891+ 125+

Monitor trap

Preparation trap

Measurement trap

Preparation trap

post-
decelerator

Timing scheme:
Tl T2 T3

400
MeV/u

73+
91+
U stripper —y

target /U91+

ESR

electron cooling
and deceleration
down to 4 MeV/u

18



Principle of Mass Spectrometry by Use of a Storage Ring P

Schotﬂéy
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electron cooling required
high accuracy
high resolving power
frequency measurement
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short half-life
time-of-flight detection
complex ion optical setting
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Measured Mass Surface

Masses of more than 1100
Nuclides were measured
Mass accuracy:
SMS 1.5 107 up to 4 -10-8
IMS ~1 106
Results: ~ 350 new masses

In addition more than
300 improved mass values

50

rp-process
path

Mass surface covered
with the time-resolved
Schottky Mass

Spectrometry 82
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P

Mass surface covered
with Isochronous Mass
Spectrometry

r-process
path

Mass Spectrometry in Storage Rings:

Present: GSI
FAIR, Lanzhou

Future:

H. Geissel et al., AIP Conf. Proc. Vol. 831 (2006) 108
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How to Reach Highest Accuracy?

exp: B. Franzke, M. Steck et al.
theo: R.W. Hasse, Phys. Rev. Lett. 83 (1999) 340

0 10° 10* 10° 10°
Number of Stored lons
Improve
» stability of the voltage of the electron cooler
» stability of the magnetic field

Use
 multiple low-noise Schottky pick-up electrodes
* higher harmonics

22



Comparison of Mass Measurements (Published since 2003)
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Laser Spectroscopy and Mass Spectrometry
in Long Isotopic Chains
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Summary and Outlook

Storing and cooling is the key to precision

The mass is the reflection of all forces acting in a quantum mechanical
system

There is a renaissance of mass measurements of*short-lived nuclei

A new generation of mass measurements was developed based on
time or {requency measurements <@

better than 108
HITRAP, MATS and FAIR with its storag |
opportunities and challenges for mass spmnﬁ of radlonuc
at accelerators i
Two recent reviews:
D. Lunney, J.M. Pearson & C. Thibault, Rev. Mod. Phy
K. Blaum, Phys. Rep. 425 (2006) 1
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