H.- Jürgen Kluge

GSI/Darmstadt and University of Heidelberg Workshop on Advanced Laser and Mass Spectrometry (ALMAS-1) October 19/20 GSI, Darmstadt, Germany

Ultrahigh-Precision Mass Spectrometry

- 1. Introduction
- 2. Principle of Mass Measurements using Traps and Storage Ring
- 3. The Penning Trap Mass Spectrometer ISOLTRAP and SHIPTRAP
- 4. The Storage Ring ESR at GSI
- 5. Performance of the Different Techniques
- 6. Summary

Mass – Binding Energy – Forces

The atomic mass of an isotope is given by:

- ⇒ high-accuracy mass measurements allow one to determine the atomic and nuclear binding energies
- ⇒ the nuclear binding energy reflects all forces (strong, electromagnetic and weak interactions) acting in the nucleus
- ⇒ the atomic binding energy reflects the electro-magnetic force acting between the electrons and between the electrons and the nucleus.

Information on Nuclear Ground State Properties by Atomic Physics Techniques

Comparison: Charge Radii – Nuclear Binding Energies

Is the mass more sensitive to nuclear structure effects than the information obtained by optical techniques (spin, moments, charge radii)? Examples : Rb and Hg isotopes

Nuclear forces maximize nuclear binding energy irrespective of shape or configuration. Nuclear Binding: some MeV per nucleon (1 GeV) \rightarrow 10⁻³, $\delta E/E \leq 1\% \rightarrow \delta m/m \leq 10^{-5}$

	Laser Spectroscopy	Mass Spectrometry
Techniques	many, often specialized: fluorescence, MOT; colinear, resonance ionization (mass) spectroscopy,	many, quite general: decays, reactions, Penning trap, storage ring, cyclotron,
Goal	spin, nuclear moments, charge radii	mass → nuclear & atomic binding energy
Calibration	well known transitions, frequency comb	well known masses, carbon cluster comb
Ultimate accuracy determined by	observation time \rightarrow atomic lifetime	observation time → nuclear half-life
Sensitivity	≈ 1 atom/second	≈ 1 atom/second
Limitation	detection efficiency, charge radii of light isotopes	not resolved isomers, space charge by isobars

Requirements for Mass Spectrometry in Different Research Areas

	δm/m	required resolving power
General physics & chemistry	< 10 ⁻⁵	10 ⁴
Nuclear structure physics - separation of isobars	10 ⁻⁶	10 ⁵
Astrophysics - separation of isomers	< 10 ⁻⁷	10 ⁶
Weak interaction studies	10 ⁻⁸	10 ⁷
Metrology - fundamental constants	< 10 ⁻⁹	10 ⁸
CPT Tests	< 10 ⁻¹⁰	10 ⁹
QED in highly-charged ions - separation of atomic states	≤ 10 ⁻¹¹	10 ¹⁰

For radioactive isotopes, a resolving power of > 10⁶ is required in order to discriminate between ground and isomeric states.

The Two Ways: ISOL

Fragmentation

ISOL and fragmentation facilities are complementary

The Present GSI Heavy-Ion Accelerator Facility

The ISOLDE Facility at CERN

Principle of Storing and Cooling

Radial force

electric fields

magnetic fields

light fields

"infinite" storage time

Harmonic potential

harmonic oscillation

2 or 3 independent eigen frequencies Cooling

decrease of oscillation amplitude

reduction of trap imperfections **Storage Devices**

PENNING and PAUL TRAP

STORAGE RING

0 0.5 1 cm

particles at nearly rest in space many cooling techniques

relativistic particles electron, stochastic, laser cooling

Single-Ion Sensitivity

Optical Detection of a Single Barium Ion in a Paul Trap

Dehmelt, Toscheck et al.

Electron Capture of a Single Tungsten Ion in the Storage Ring ESR

Bosch et al.

Principle of Mass Measurements in Penning Traps

Confinement of ions in a strong magnetic field of known strength B

Mass measurement via determination of cyclotron frequency

 $v_c = (q/m) \cdot (B/2\pi)$

from characteristic motion of stored ions

Example

B = 6 T, q = 1, m = 100 u $\rightarrow v_c$ = 1 MHz

$$T_{obs} = 1 s: \Delta v_c = 1 Hz$$

 \rightarrow R = 10⁶ and δ m/m = 10⁻⁸

Absolute Mass Measurements of Radionuclides by Use of Carbon Cluster

cluster ion source

K. Blaum et al., Eur. Phys. J. A 15, 245 (2002)

Penning Traps at Accelerators for Mass Spectrometry

operating facilities

• facilities under construction or test

planned facilities

Complementarities of Penning Traps for Mass Spectrometry

Type of reaction or facility	ISOL- TRAP CERN	CPT Argo.	SHIP- TRAP GSI	JYFL- TRAP Jyväskylä	LEBIT MSU	MAFF- TRAP Munich	TITAN TRIUMF	HITRAP GSI	MATS GSI
ISOL	X						X		
fusion		x	X						
IGISOL				X					
fragmen- tation					X			x	x
fission by neutrons						x			
highly- charged ions						x	x	x	x
<10 ⁻¹⁰ accuracy								X	x

• operating facilities

• facilities under construction or test

• planned facilities

the masses of about 700 isotopes were measured up to now by use of Penning traps

How to Reach Highest Accuracy?

Use

- single ion stored in the Penning trap
- a highly charged ion
- a high-field superconducting magnet
- self-shielded superconducting magnet
- storage at low temperature
- long observation time

Avoid

- fluctuations of external magnetic fields
- changes of pressure
- changes of temperature

Presently reached: 10⁻¹¹ for singly charged ion

10⁻¹⁰

MIT Group

M.P. Bradley, F. Palmer, D. Garrison, L. Ilich, S. Rusinkiewics, D.E. Pritchard, Hyperfine Interactions 108 (1997) 144 M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, Phys. Rev. Lett. 83 (1999) 4510

Harvard Group

G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe, Phys., Rev. Lett. 82 (1999) 3198 Seattle Group

R.S. Van Dyck, Jr., D.L. Farnham, S.L. Zafonte, P.B. Schwinberg, Rev. Scientific Instr. 70 (1999) 1665. R.S. Van Dyck, Jr., S.L. Zafonte, P.B. Schwinberg, Hyperfine Interactions 132 (2001) 163

10⁻¹¹

MIT Group

S. Rainville, J.K. Thompson, D.E. Pritchard, Science 303 (2004) 334

HITRAP at the Experimental Storage Ring ESR

HITRAP

K. Blaum et al.

Principle of Mass Spectrometry by Use of a Storage Ring

SMS: Broad Band Frequency Spectra

Measured Mass Surface

H. Geissel et al., AIP Conf. Proc. Vol. 831 (2006) 108

How to Reach Highest Accuracy?

Improve

- stability of the voltage of the electron cooler
- stability of the magnetic field

Use

- multiple low-noise Schottky pick-up electrodes
- higher harmonics

Comparison of Mass Measurements (Published since 2003)

Laser Spectroscopy and Mass Spectrometry in Long Isotopic Chains

Summary and Outlook

Storing and cooling is the key to precision The mass is the reflection of all forces acting in a quantum mechanical system There is a renaissance of mass measurements of short-lived nuclei A new generation of mass measurements was developed based on time or frequency measurements

Absolute mass measurements of radioactive isotopes against the microscopic mass unit can now be performed with an accuracy better than 10⁻⁸ HITRAP, MATS and FAIR with its storage ringswill provide unique opportunities and challenges for mass spectrometry of radionuclides at accelerators Two recent reviews: D. Lunney, J.M. Pearson & C. Thibault, Rev. Mod. Phys. 75 (2003) 1021 K. Blaum, Phys. Rep. 425 (2006) 1