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INTRODUCTION

Nuclear structure beyond A~40 is dominated by collective features.
Properties of the collective features arise from the underlying shell structure, mainly 
the single particle orbitals that are involved in the collective structure and the 
effective interactions. 

Collective features can be described in terms of shapes. A property of 
collective features in nuclei is the occurrence of several shapes.

Nuclear masses are an ideal tool to study shapes and shape changes, since the 
binding energy is strongly influenced by the shape of the nucleus.

A convenient framework for studying shapes of nuclei, the transitions between 
them and their connection with the underlying shell structure is provided by 
the Interacting Boson Model. 



Shapes and shape changes within this model can be studied by making use 
of intrinsic or coherent states and an algorithm called “quantum phase
transitions” or “ground state phase transitions”.
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Phase transitions and their order influence all observables, in particular ground state
energies, and thus nuclear masses.

The binding energy of an even-even nucleus, within the framework of the Interacting 
Boson Model, can be written as  

0B DE E E= +

where E0 is a smooth contribution and ED is the contribution of deformation.

The smooth contribution is a universal property of a major shell. In the interacting 
boson model, it is a quadratic function of N (the number of pairs)
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This contribution can be obtained empirically from semi-magic nuclei.



The empirical analysis is best performed in terms of two-neutron (or two-proton) 
separation energies

2 ( ) ( 1) ( )n B BS N E N E N= + −

where N is the number of pairs (boson number)

In a plot of S2n(N) versus N, the interacting boson model gives a straight line

2 ( )nS N A BN= +

In the absence of deformation effects, the plot of S2n(N) should be a series of 
parallel lines
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SIGNATURES OF SHAPE PHASE TRANSITIONS IN 
NUCLEAR MASSES

At a zeroth-order transition, the deformation energy ED is discontinuous

At a first order transition, the derivative of ED is discontinuous

At a second order transition, the second derivative of ED is discontinuous

…

Hence, first order shape phase transitions appear as discontinuities in

2 ( )nS N

Second order transitions as discontinuities in the double separation energies

2 2 2' ( ) ( 1) ( )n n nS N S N S N= + −

[The smooth contribution does not have discontinuities.]



Expected behavior of S2n(N) at a phase transition
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Two regions of 1st order transitions have 
been identified

Region I: Nd-Sm-Gd-Dy
Region II: Zr-Sr
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Evidence of  1st order phase transitions in the masses of Nd-Sm-Gd-Dy
isotopes at neutron number 88-90
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Evidence of 1st order phase transitions in the masses of Sr-Zr isotopes at neutron 
number 58-60
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ROLE OF GSI-FAIR
The experimental information on the neutron rich side of the phase transition is 
incomplete. To complete this information and to better understand how shape 
phase transitions occur in nuclei, one needs
Region I
Extend measurements of 2n separation energies in Sn-Te-Xe-Ba-Ce as far as possible 
in the neutron rich region with N>82
Region II
Same as above for Ge-Se-Kr-Sr-Zr-Mo with N>50

In first order transitions, deformation effects in S2n are of order of 1MeV. 
Accuracy needed to test first order transitions §100keV

In second order transitions, deformation effects are of order 100keV.
Accuracy needed to test second order transitions §10keV
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Phase 
transitional 
region II
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COMMENTS

• Explicit predictions for S2n(N) in regions I and II will be available in 
2007.
• The analysis can be extended to odd-even nuclei, where new features 
appear. A simultaneous measurement of masses of odd-even, and even-
even nuclei in regions I and II would provide information on phase 
transitions in odd-mass nuclei.
• A complete discussion of nuclear masses requires the explicit 
introduction of proton and neutron degrees of freedom and the study of 
two-neutron and two-proton separation energies. These are now 
functions of two variables

The binding energies, EB, and two-nucleon separation energies are 
surfaces. The smooth contribution to S2 is a series of parallel planes.
A simultaneous measurement of isotopes and isotones would provide 
information on the separation energy surface and hence on the behavior 
of phase transitions with proton and neutron number.
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