Thermalization of fast rare isotope beams – from linear gas cells to cyclotron gas stoppers

G. Bollen National Superconducting Cyclotron Laboratory NSCL Michigan State University

- Low-energy beams at the NSCL
- Limitations of present stopper concepts
- The cyclotron gas stopper
- Perspectives

Low-Energy Beams from Fast-Beam Fragmentation

Benefits of relativistic projectile fragmentation and in-flight separation

- Fast
- No element selectivity

Short beam development times

New facilities and upgrades promise high intensities

Gas stopping \rightarrow new opportunities with precision (ISOL-type) experiments

- Mass measurements
- Laser spectroscopy
- Experiments with post-accelerated beams

Planned for next-generation RIB Facility in the US FAIR/GSI, RIBF/RIKEN

```
Stopping of beams >50 MeV/u tested at NSCL, RIKEN, GSI(ANL)
First stopped-beam experimental program with LEBIT at NSCL
```

National Superconducting Cyclotron Laboratory

Premier rare isotope science facility in the US

NSC

Low Energy Beam and Ion Trap Facility LEBIT

D. Davies, E. Kwan, A. Kwiatkowski, G. Pang, A. Prinke, R. Ringle, J. Savory, P. Schury, C. Sumithrarachchi, T. Sun M. Facina, J. Huikari, C. Bachelet, M. Block, C. Folden III, C. Guenaut LEBIT trappers and helpers G. Bollen, D.J. Morrissey, S. Schwarz

Low Energy Beam and Ion Trap Facility LEBIT

eV

 Stopping and extraction of rare isotope beams (100 MeV/u) from fast beam fragmentation Mass measurements since May 2005 ³³Si, ³⁴P, ³⁷Ca, ³⁸Ca, ⁴⁰S, ⁴¹S, ⁴²S, ⁴³S, ⁴⁴S, ⁶⁵Ge, ⁶⁶Ge, ⁶⁶As, ⁶⁷As, ⁸⁰As, ^{81m}Se, ^{81g}Se

First LEBIT Results

Super-allowed beta emitter ³⁸Ca – a new candidate for test of CVC

G. Bollen et al. PRL 96 (2006) 152501

LEBIT: δ**m = 280 eV**

Partial half-life *t* still required T_{1/2} needs to be improved Branching ratio unknown

 \rightarrow 10 fold improvement of Q_{EC} value

TAMU: J.C. Hardy in progress ISOLDE: B. Blank et al. in progress

First LEBIT results

Masses close to N = Z = 33: ⁶⁵Ge, ⁶⁶Ge, ⁶⁶As, ⁶⁷As, ⁶⁹Se

P. Schury et al., PRC in preparation

Mass comparison

- 20-fold improved masses in region critical to rp-process
- Improved effective lifetime for waiting point nucleus ⁶⁸Se

Latest LEBIT results

Towards N = 28 in vicinity of Z = 14: ⁴⁰S, ⁴¹S, ⁴²S, ⁴³S, ⁴⁴S

38.0-37.5-37.0-36.5 TOF (µs) 36.0 35.5 35.0 34.5 44 $T_{1/2} = 123 \text{ ms}$ 34.0 33.5 2528600 2528620 2528640 2528580 Frequency (Hz)

↑ ↑ ↑
< 2 weeks old</p>

Beam rate into gas cell < 30/s

Expected accuracy $\delta m \approx 5 \text{ keV}$

Ar	⁴³ Ar	44Ar	45Ar	46Ar	47 Ar	48Ar	49Ar	50 _{Ar}	51Ar
CI	42 _{CI}	43 _{CI}	44CI	45 _{CI}	46 _{CI}	47CI	48 _{Cl}	49 _{CI}	
s	41s	42 _S	43 _S	(44s)	45g	46 _S	47 _S	-	Z=16
P	40p	41p	42p	(43p)	44p				
Si	39 _{Si}	40 _{SI}	⁴¹ Si	(42 _{SI})	43 _{SI}	-	Z=14		
A	38 _{AI}	39 _{AI}	40 _{Al}	41 _{AI}					
Mg	37 _{Mg}	38 _{Mg}							

NSCL linear gas stopping cell

- Beam momentum compression
- Cell: 1 bar He, length =50 cm
- Electrostatic guiding fields

Stopping and total efficiency

Rate-dependence observed

L.Weissman et al. NIM A522 (2004) 212, NIM A531 (2004) 416, Nucl. Phys. A746 (2004) 655c, NIM A540 (2005) 245

NSCL linear gas stopping cell

UHV + multi-step gas purification

Chemistry remains important

Stable (molecular) ion beams

10⁶-10⁷ (He⁺-e⁻ pairs)/ion + charge exchange with gas impurities Radioactive molecular sidebands

^ACa(H₂0)⁺, ^AAsHe⁺, ^ASCH₃, ^ASiCH₃, ^APN₂, ^AGeH

Several purification steps in LEBIT, for example CID in cooler/buncher

Molecular sidebands $[{}^{38}Ca(H_2O)_n]^{2+}$

Stopping of intense beams in linear gas cells

red dots - He, blue dots - fragments

Georg Bollen, GSI October 06

Stopping in linear gas cells

1) Intensity-dependent extraction efficiencies limit experimental opportunities

2) Extraction times of 10-200 ms do not match advantages of fast RIB production

Ionization Rate Density (IP/cm³/s)

Cyclotron Gas Stopper Concept

Principle: Gas-filled weakly-focusing cyclotron magnet + RF guiding techniques

Exotic atom studies in a cyclotron trap for antiprotons, pions, and muons

L.M. Simons, Hyperfine Interactions 81 (1993) 253

Proposal for a cyclotron ion guide with RF carpet

I. Katayama, M. Wada, Hyperfine Interactions 115 (1998) 165

A Study of Gas-Stopping of Intense Energetic Rare Isotope Beams

G. Bollen, D.J. Morrissey, S. Schwarz, NIM A550 (2005) 27

First MC simulations

Simulation

Lorentz force, stopping power, charge changing collisions, small angle multiple-scattering

Cyclotron gas stopper

 $B = 2 \text{ T}; \ n = 0.2, r_{inj} = 0.75 \text{ m}$ $p_{He} = 10 \text{ mbar}$

Beam

100 MeV/u ⁷⁸Br on 2.6mm Al \rightarrow 610 MeV ⁷⁸Br $\Delta E/E = 20\%$; width = 10 mm; div =10 mrad

3D-Trajectories

Minimizing space charge effects

S NSCL

Energy loss density

Stopped-ion distribution

- Ions accumulate in center, separated from region of highest ionization
- He⁺ and e⁻ can be collected efficiently up to 10⁸ incoming ions/s
- Ions with E > 1 MeV don't care about space charge

Georg Bollen, GSI October 06

Ion extraction

RF carpet + RF ion guides for stopped-ion collection and extraction

Low gas pressure (10 mbar compared to 200 - 1000 mbar in present systems) \rightarrow

Time for collection onto carpet and transport over 50 cm is < 5 ms !

M. Wada et al., NIM B 204 (2003) 570: RF carpet in linear gas cell

Ion extraction with rf carpet

Effective potential close to surface

1 MHz, U_{rf} = 200 V, d=1mm A = 40, Q = 1

NSCL Cyclotron Gas Stopper Project

Superconducting magnet system $B_{max} = 2 \text{ T}$, $r_{inj} = 0.9 \text{ m}$, n < 0.2Vertical system with (re)movable yoke, horizontal beam extraction Vacuum chamber in guard vacuum cryogenically cooled

NSCL Project team: G. Bollen, C. Guenaut, D. Lawton, F. Marti, D. J. Morrissey, G. Pang, J. Ottarson, S. Schwarz, A. Zeller

Beam simulation in realistic magnetic fields

10 different magnet systems (S1-S10) considered so far

Georg Bollen, GSI October 06

Realistic simulations – sector fields

Sector field: advantages for beam injection

Beam properties after momentum compression:

B_ρ = 2.6 Tm, Δ p/p = 0.5%, ε_z = 400 π mm mrad, ε_r = 30 π mm mrad

98% stopping efficiency

NSCL Cyclotron Gas Stopper Project

Status

- Realistic simulations Exploration of parameter space (optimum B, shape, p, Bρ) ^{70,79,94}Br (done), ^{6,9,11}Li and ^{108,127,144}I.
- Superconducting magnet Several system designs performed (S1-S10)
- Mechanical design Overall concept for mechanical system developed Advanced concept for cryogenic vacuum chamber w. degraders, etc.
- RF carpet Basic ion transport simulations, rf carpet test stand will be build
- Towards realization Final magnet design and order of coil material before end of 2006.

Time for realization and commissioning 2.5 – 3 years

Costs: \$3M

Will have large impact on ongoing mass measurement program Prepare now for new experimental opportunities

Laser Spectroscopy

Ground state properties via laser spectroscopy

Charge radii via isotopic shift measurements

Skins and Halos - complements matter radius determination

Nuclear Deformation, Shell Effects

Strong endorsement by NSF

Laser Spectroscopy of Rare Isotopes – Status and Future

Georg Bollen, GSI October 06

NSCL re-acceleration plans

Re-acceleration to 1 MeV/u - 12 MeV/u

- Provide beams nowhere else available in the world
- high-performance cost-effective post-acceleration scheme

Low-energy reactions for nuclear astrophysics

Transfer reactions, Coulomb excitation for nuclear structure studies

NSCL Reacceleration Stage Options

Stage II

ISF (Isotope Science Facility) at MSU

Fast beams, gas stopping, stopped and reaccelerated beams – allows ISOL

- Energy/nucleon: 200 MeV ²³⁸U, 232 MeV ¹²⁹Xe, 373 MeV ³He, 525 MeV ¹H
- 200 400 kW beam power possible

Upgrade to RIA capability possible

Conclusions and Summary

Thermalized rare isotope beams from fast-beam fragmentation allow important properties of a wide range of isotopes to be studied with powerful experimental techniques.

- Penning trap mass measurements. NSCL, FAIR
- Laser spectroscopy. RIKEN, NSCL, FAIR
- Precision decay studies of trapped ions or atoms. NSCL, FAIR, RIKEN
- Re-acceleration NSCL

New concepts are required to make best use of the advantages of fastbeam fragmentation and the capabilities of next-generation facilities.

Cyclotron gas stopper most promising new concept.

Full demonstration needed and on its way.