

Trap-assisted (nuclear) spectroscopy

19.-20.10. 2006

Plan of the MATS setup

SuperFRS at low energy Complex decays Isomers Low rates $T_{1/2} (\beta) > 10 ms$

Exotic nuclei from

Observables: Mass Moments, spin Decay properties

19.-20.10. 2006

Trap- assisted spectroscopy is a broad concept !!!

RFQ or Paul traps

Cooled and bunched sources → <mm² & <eV Collinear laser spectroscopy with few ions/s ! Implantations for high-precision experiments

Penning traps

Confined sources coupled with very high mass resolution Ultra-high mass resolving power

Optical traps Confined & pure sources for fundamental studies

In-trap spectroscopy of stored and purified ion samples electron/positron spectroscopy (CE, β⁺, β⁻, e+/e⁻) recoil ion spectroscopy (α, β, βn, β2n,...) CP and photon spectroscopy

$\begin{array}{l} \textbf{Post-trap "low-background" spectroscopy} \\ \beta, p, \alpha, \gamma \text{ and } \beta n \text{ decay spectroscopy of pure isotope sources} \\ \text{ decay spectroscopy of isomers} \\ \text{ spectroscopy with ion tagging} \\ \text{ ion counting for cross sections} \end{array}$

IGISOL is universal and fast production method and provides a good reference for opportunities at the FAIR MATS experiment.

19.-20.10. 2006

Double Penning trap, JYFLTRAP

19.-20.10. 2006

Program running @ JYFLTRAP

19.-20.10. 2006

Two-neutron separation energies, S_{2n}

19.-20.10. 2006

Ion manipulation & & Post-trap spectroscopy

19.-20.10. 2006

Independent yields of fission products

Comparison to previous data

- Comparison to 50 MeV p induced fission
- Yield normalised to the Tracy data
- Measured distribution shape seems to agree more closely to the old
 experimental values than to the theory
- Low mass side not measured because of difficult background from stable Xe isotopes

19.-20.10. 2006

19.-20.10. 2006

Identification of Triple Isomerism in 70Cu

Post-trap nuclear spectroscopy

19.-20.10. 2006

Spectroscopy with mass-purified samples: Decay spectroscopy of ^{100,102,104}Zr Decay studies ¹¹¹Mo, ¹¹³Tc and ¹¹⁵Ru

Search for new isotopes & β half lives

S. Rinta-Antila, PhD thesis Jan Kurpeta

19.-20.10. 2006

Juha Äystö JYFL-Finland

J. Rissanen et al. (2006)

19.-20.10.2006

The first decay study of ¹¹⁵Ru

Precision experiments

19.-20.10. 2006

Q_{EC} -values for superallowed beta decay

19.-20.10. 2006

JYFl

Superallowed beta decay of 62Ga

A=6214000-⁶⁴Zn(p,3n) 12000- $MRP = 20\ 000$ 10000-8000-Cu Zn 6000-4000-Ga 2000-0 1734700 1735200 1734600 1734800 1734900 1735000 1735100 1735300 Frequency (Hz)

Precise $T_{1/2}$, $I_{\rm b}$ and $Q_{\rm b}$ requested

⁶²Ga lifetime ~ 116 ms

- Trap cycle time 71 ms
- 25 ms cooling
- 5 ms magnetron excitation
- 40 ms cyclotron excitation
- 40% cooler & trap transmission
- 150 ions/s detected after trap

 Branching ratio study: 4π β + 3 EXOGAM clovers around implantation point

JYFL

ons a.u.

19.-20.10. 2006

BR & T_{1/2} of **0+-0+** decay

 $4\pi\beta$ detector and three clover germanium detectors.

19.-20.10. 2006

FT-systematics + new PT-data and unitarity of CKM

New Q-value determinations (PT):

JYFL

	²² Mg	M. Mukherjee <i>et al</i> ., Phys. Rev. Lett. 93 (2004) 150801
	²⁶ Al ^m , ⁴² Sc, ⁴⁶ V	T. Eronen et al., Phys. Rev. Lett. (2006) submitted, arXiv nucl-ex/0606035
	³⁴ Ar	F. Herfurth <i>et al</i> ., Eur. Phys. J. A 15 (2002) 17
	³⁸ Ca	G. Bollen et al., Phys. Rev. Lett. 96 (2006) 152501
	⁴⁶ V	G. Savard et al,, Phys. Rev. Lett. 95 (2005) 102501
	⁶² Ga	T. Eronen et al., Phys. Lett. B 636 (2006) 191; B. Hyland et al., Phys. Rev. Lett. 97(2006) 102507
	⁷⁴ Rb	A. Kellerbauer et al., Phys. Rev. Lett. 93 (2004) 072502
ſ		

Z>37: FAIR

19.-20.10. 2006

In-trap spectroscopy

19.-20.10. 2006

In-trap spectroscopy

free of source effects high efficiency Ion beam coolers in nuclear physics, J. Äystö and A. Jokinen J. Phys. B 36 (2003) 573

19.-20.10. 2006

Nuclear Instruments and Methods in Physics Research A 492 (2002) 451-463

In-trap conversion electron spectroscopy

L. Weissman^{a,*}, F. Ames^{a,b}, J. Äysto^{a,c}, O. Forstner^a, K. Reisinger^{a,b}, S. Rinta-Antila^d

19.-20.10.2006

JYFLTRAP in conversion electron spectroscopy

In-trap spectroscopy; commissioning run for ^{117m}Pd

- ✓ ²³⁸U(p,f) @ 25 MeV
- ✓ 10 mm² Si-detector @ B=0.7 T
- ✓ Excellent lineshape
- ✓ Efficient collection of electrons
- ✓ Background-free spectra
- ✓ Extends to very low energies
- ✓ No X-rays!
- ✓ Applicable to rather short-lived states

19.-20.10. 2006

Juha Äystö JYFL-Finland

J. Rissanen et al. (2006)

Online Results: ^{117m}Pd and ^{118m2}In

JŸFL

Outlook for FAIR

In-trap spectroscopy:

T_{1/2} reach 10 ms Rates of few ions /min possible

Need for multidetector array for γ - & X -rays, electron, CP and recoil ion detection \rightarrow significant R&D required

Very high energy resolution measurements (bolometers?)

Post-trap spectroscopy:

Precision measurements (T_{1/2}, br) Isomer tagging (for mass measurement) Ion tagging for sensitivity improvement Delayed neutron measurements

Need a special multipurpose setup

Post RFQ-spectroscopy:

cooled & bunched sub-mm beams \rightarrow applications

19.-20.10. 2006

Overview of the recent studies (PT)

19.-20.10. 2006

Thanks to many:

- + Ari Jokinen, Heikki Penttilä JYFLTRAP & IGISOL-group at JYFL
- + Juergen Kluge & ISOLTRAP & SHIPTRAP groups
- + So many others ...

